精英家教网 > 高中数学 > 题目详情
11.如图,在四棱锥PABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,E是PC的中点.
(1)证明:AE⊥平面PCD;
(2)求二面角A-PD-C的正弦值.

分析 (1)由PA⊥底面ABCD,可得 CD⊥PA,又CD⊥AC,故CD⊥面PAC,从而证得CD⊥AE.证明AE⊥PD,再由 AB⊥PD 可得 PD⊥面ABE.
(2)过点A作AF⊥PD,由(1)知,AE⊥面PCD,故∠AFE是二面角A-PD-C的一个平面角,用面积法求得AE 和AF,由 sin∠AFE=$\frac{AE}{AF}$求得结果.

解答 (1)证明:在四棱锥P-ABCD中,
因PA⊥底面ABCD,CD?平面ABCD,
故CD⊥PA.由条件CD⊥AC,PA∩AC=A,
∴CD⊥平面PAC.
又AE?平面PAC,∴AE⊥CD.
由PA=AB=BC,∠ABC=60°,可得AC=PA.
∵E是PC的中点,∴AE⊥PC.又PC∩CD=C,
综上得AE⊥平面PCD.
(2)解:过点A作AF⊥PD,垂足为F,连接EF.
由(1)知,AE⊥面PCD,故∠AFE是二面角A-PD-C的一个平面角.
设AC=a,则AE=$\frac{\sqrt{2}}{2}$a,
从而AF═$\frac{2}{\sqrt{7}}$aAD=$\frac{2}{\sqrt{3}}$a,PD=$\sqrt{\frac{7}{3}}$a,
从而AF=$\frac{PA•AD}{PD}$=$\frac{2}{\sqrt{7}}$a,
故 sin∠AFE=$\frac{AE}{AF}$=$\frac{\sqrt{14}}{4}$.

点评 本题考查证明线线垂直、线面垂直的方法,找出二面角A-PD-C的平面角是解题的难点,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.下列函数中,y的最小值为4的是(  )
A.$y=x+\frac{4}{x},(x≠0)$B.y=-x2+2x+3
C.$y=sinx+\frac{4}{sinx}(0<x<π)$D.y=ex+4e-x

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.设函数f(x)是定义在R上的增函数,且f(x)≠0,对于任意的实数x,y都有f(x+y)=f(x)•f(y).
(1)求证:f(x)>0;
(2)若f(1)=2,解不等式:f(3x)>4f(x);
(3)由(1)及题设,写出函数f(x)的一个模型.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知正数x,y满足$\frac{1}{x}+\frac{16}{y}=xy$,则log2x+log2y的最小值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.定义在R上的偶函数f(x)满足f(x+1)=-f(x),且在[-1,0]上是增函数,下面关于f(x)的判断,其中不正确的是(  )
A.f(x)图象关于点P(1,0)对称B.f(x)图象关于直线x=1对称
C.f(x)在[0,1]上是减函数D.f(2)=f(0)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若$\overrightarrow{a}$=(λ,2),$\overrightarrow{b}$=(-3,5),且$\overrightarrow{a}$与$\overrightarrow{b}$的夹角是钝角,则λ的取值范围是(  )
A.($\frac{10}{3}$,+∞)B.[$\frac{10}{3}$,+∞)C.(-∞,$\frac{10}{3}$)D.(-∞,$\frac{10}{3}$]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知函数f(x)=$\sqrt{3}$sinx+cosx在x0处取得最大值,则cos(x0-π)=-$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.某种产品的广告费用支出x万元与销售额y万元之间如下的对应数据:
24568
20305 05070
(Ⅰ)根据上表提供的数据,求出y关于x的线性回归返程;
(Ⅱ)据此估计广告费用为10万元时,所得的销售收入.
参考公式:线性回归方程:$\stackrel{∧}{y}$=$\stackrel{∧}{b}$ x+$\stackrel{∧}{a}$,其中$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$=$\frac{\overline{xy}-\overline{x}\overline{y}}{\overline{{x}^{2}}-{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{x}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.把一枚硬币任意掷两次,事件A=“第一次出现正面”,事件B=“第二次出现正面”,则P(B|A)=(  )
A.$\frac{1}{4}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{2}{3}$

查看答案和解析>>

同步练习册答案