分析 已知等式利用正弦定理化简,得到a+b=$\sqrt{2}$c,根据已知求出c的值,进而确定出a+b的值,利用三角形面积公式表示出三角形ABC面积,将已知面积代入求出ab的值,最后利用余弦定理表示出cosC,将各自的值代入求出cosC的值,即可确定出C的度数.
解答 解:在△ABC中,将sinA+sinB=$\sqrt{2}$sinC,利用正弦定理化简得:a+b=$\sqrt{2}$c,
∵a+b=$\sqrt{2}$,
∴$\sqrt{2}$c=$\sqrt{2}$,即c=1,
∵S△ABC=$\frac{1}{2}$absinC=$\frac{1}{6}$sinC,
∴ab=$\frac{1}{3}$,
∵cosC=$\frac{{a}^{2}+{b}^{2}-{c}^{2}}{2ab}$=$\frac{{a}^{2}+{b}^{2}-1}{2ab}$=$\frac{(a+b)^{2}-2ab-1}{2ab}$=$\frac{2-\frac{2}{3}-1}{\frac{2}{3}}$=$\frac{1}{2}$,
则C=$\frac{π}{3}$.
故答案为:$\frac{π}{3}$.
点评 此题考查了正弦、余弦定理,以及三角形面积公式,熟练掌握定理及公式是解本题的关键,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$ | B. | 2 | C. | -$\frac{1}{2}$ | D. | -2 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {x|0≤x≤2} | B. | {x|0<x<2} | C. | {0,1,2} | D. | {0,1} |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com