精英家教网 > 高中数学 > 题目详情
4.已知角α的终边经过点(-3,4),则cosα=?-$\frac{3}{5}$;cos2α=-$\frac{7}{25}$.

分析 由条件利用任意角的三角函数的定义,求得cosα 的值,再利用二倍角的余弦公式求得cos2α 的值.

解答 解:∵角α的终边经过点(-3,4),则x=-3,y=4,r=|OP|=5,
∴cosα=$\frac{x}{r}$=-$\frac{3}{5}$ cos2α=2cos2α-1=-$\frac{7}{25}$,
故答案为:-$\frac{3}{5}$;-$\frac{7}{25}$.

点评 本题主要考查任意角的三角函数的定义,二倍角的余弦公式的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.已知集合A={1,2,3,4},B={1,3,m},且B⊆A,那么实数m=2或4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.半径为R的球内部装有4个半径相同的小球,则小球半径r的可能最大值为(  )
A.$\frac{{\sqrt{3}}}{{2+\sqrt{3}}}R$B.$\frac{1}{{1+\sqrt{3}}}R$C.$\frac{{\sqrt{6}}}{{3+\sqrt{6}}}R$D.$\frac{{\sqrt{5}}}{{2+\sqrt{5}}}R$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=alnx+$\frac{1-a}{2}$x2-(b+1)x(a为实常数,且a≠1),曲线y=f(x)在点(2,f(2))处的切线的斜率为1-$\frac{3}{2}$a.
(1)求实数b的值;
(2)求函数f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设命题 p:函数f(x)=ex-1在R上为增函数;命题q:函数f(x)=cos(x+π)为奇函数.则下列命题中真命题是(  )
A.p∧qB.(¬p)∨qC.(¬p)∧(¬q)D.p∧(¬q)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,在边长为4 的菱形ABCD中,∠BAD=60°,DE⊥AB于点E,将△ADE沿DE
折起到△A1DE的位置,使A1D⊥DC,如图.
(1)求证:A1E⊥平面BCDE;
(2)求二面角E-A1B-C的余弦值;
(3)判断在线段EB上是否存在一点P,使平面A1DP⊥平面A1BC?若存在,求出$\frac{EP}{PB}$的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.若函数f(x)=|x-1|+|x-2|,不等式|t-k|+|t+k|≥|k|•f(x)对一切t∈R恒成立,k为非零常数,则实数x的取值范围为[$\frac{1}{2}$,$\frac{5}{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设数列{an}的前n项积为Tn,且Tn=2-2an
(1)求数列{an}的通项公式;
(2)设bn=(1-an)(1-an+1),数列{bn}的前n项和为Sn,求证:$\frac{1}{12}$≤Sn<$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知直线l1∥l2,在l1上取三点,l2上取两点,求由这五个点能确定平面的个数.

查看答案和解析>>

同步练习册答案