分析 由奇函数关于原点对称的性质,即可求得f(1);不等式f(f(x))≤7的解集等价于f(x)≥-3的解集,即可求得答案.
解答 解:∵R上的奇函数f(x)=$\left\{\begin{array}{l}{(\frac{1}{2})^{x}-1,x≤0}\\{g(x),x>0}\end{array}\right.$,
∴f(1)=-f(-1)=-[($\frac{1}{2}$)-1-1]=-1,
∵不等式f(f(x))≤7,f(-3)=7,
∴f(x)≥-3,
∵R上的奇函数f(x)=$\left\{\begin{array}{l}{(\frac{1}{2})^{x}-1,x≤0}\\{g(x),x>0}\end{array}\right.$,
∴g(x)=1-2x,
∴f(x)≥-3等价于$\left\{\begin{array}{l}{x≥0}\\{1-{2}^{x}≥-3}\end{array}\right.$或$\left\{\begin{array}{l}{x<0}\\{{2}^{-x}-1≥-3}\end{array}\right.$,
可以解得x≤2,
即不等式f(f(x))≤7的解集为(-∞,2].
故答案为:-1;(-∞,2].
点评 本题考查奇函数的性质以及求解方法,考查复合不等式的求解,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 243 | B. | -243 | C. | 81 | D. | -81 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -$\frac{3}{4}$ | B. | $\frac{3}{4}$ | C. | -$\frac{4}{3}$ | D. | $\frac{4}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 喜欢看足球比赛 | 不喜欢看足球比赛 | 总计 | |
| 男 | |||
| 女 | |||
| 总计 |
| P(K2≥k0) | 0.4 | 0.25 | 0.10 | 0.010 |
| k0 | 0.708 | 1.323 | 2.706 | 6.635 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com