精英家教网 > 高中数学 > 题目详情
12.已知函数f(x+1)是偶函数,当x∈(1,+∞)时,函数f(x)=sinx-x,设a=$f(-\frac{1}{2})$,b=f(3),c=f(0),则a、b、c的大小关系为(  )
A.a<b<cB.c<a<bC.b<c<aD.b<a<c

分析 易得函数f(x)的图象关于直线x=1对称,且当x∈(1,+∞)时,函数f(x)=sinx-x单调递减,由对称性可得a=f($\frac{5}{2}$),c=f(2),由单调性可得答案.

解答 解:∵函数f(x+1)是偶函数,
∴函数f(x)的图象关于直线x=1对称,
又∵当x∈(1,+∞)时,函数f(x)=sinx-x,
∴b=f(3),a=f(-$\frac{1}{2}$)=f($\frac{5}{2}$),c=f(0)=f(2),
又x∈(1,+∞)时,f′(x)=cosx-1≤0,
∴当x∈(1,+∞)时,函数f(x)=sinx-x单调递减,
∴b<a<c,
故选:D.

点评 本题考查函数的单调性和对称性,涉及导数法判函数的单调性,属基础题

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.设数列{an}的前n项和为Sn,且满足S1=2,Sn+1=3Sn+2(n=1,2,3…).
(Ⅰ)求证:数列{Sn+1}为等比数列;
(Ⅱ)求通项公式an
(Ⅲ)若数列$\left\{{\frac{b_n}{a_n}}\right\}$是首项为1,公差为2的等差数列,求数列{bn}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知直线l:x-y+2=0(m∈R)与圆C:(x+2)2+(y-1)2=4相交于A,B两点,则$\overrightarrow{AC}$•$\overrightarrow{AB}$=7.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知{an}为等差数列且公差d≠0,其首项a1=20,且a3,a7,a9成等比数列,Sn为{an}的前n项和,n∈N*,则S10的值为(  )
A.-110B.-90C.90D.110

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=alnx-$\frac{x-1}{x+1}$.
(1)当a=1时,求f(x)在x=2处的切线方程;
(2)当x>1时,f(x)>0,求实数a的取值范围;
(3)证明:$\frac{1}{3}+\frac{1}{5}+…+\frac{1}{2n+1}<\frac{1}{2}$ln(n+1)(n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,在直角坐标系xOy中,一次函数y=-$\frac{2}{3}$x+m(m为常数)的图象与x轴交于A(-3,0),与y轴交于点C.以直线x=-1为对称轴的抛物线y=ax2+bx+c(a,b,c为常数,且a>0)经过A、C两点,与x轴正半轴交于点B.
(1)求一次函数及抛物线的函数表达式.
(2)已知在对称轴上是否存在一点P,使得△PBC的周长最小,若存在,请求出点P的坐标.
(3)点D是线段OC上的一个动点(不与点O、点C重合),过点D作DE‖PC交x轴于点E,连接PD、PE.设CD的长为m,△PDE的面积为S.求S与m之间的函数关系式.并说明S是否存在最大值,若存在,请求出最大值:若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知点P是双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)右支上的动点,F1、F2分别是双曲线的左、右焦点,∠F1PF2的角平分线l与x轴交于点Q(x0,0),设双曲线的半焦距为c,若x0的范围是0<x0≤$\frac{2}{3}$c,则双曲线的离心率是(  )
A.$\frac{3}{2}$B.2C.$\frac{5}{2}$D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知直线l:y=x+2与双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)相交于B、D两点,且BD的中点为M(1,3).
(1)求双曲线C的离心率;
(2)设双曲线C的右顶点为A,右焦点为F,|BF|•|DF|=17,试判断△ABD是否为直角三角形,并说明理由.

查看答案和解析>>

同步练习册答案