精英家教网 > 高中数学 > 题目详情
8.若直线l:mx+ny=4和圆O:x2+y2=4没有交点,则过点(m,n)的直线与椭圆$\frac{x^2}{9}+\frac{y^2}{4}=1$的交点个数为(  )
A.0个B.至多有一个C.1个D.2个

分析 通过直线与圆、圆与椭圆的位置关系可得点P(m,n)在椭圆内,进而可得结论.

解答 解:由题意可得:$\frac{|0+0-4|}{\sqrt{{m}^{2}+{n}^{2}}}$>2,即m2+n24,
∴点P(m,n)是在以原点为圆心,2为半径的圆内的点,
∵椭圆的长半轴3,短半轴为2,
∴圆m2+n2=4内切于椭圆,
∴点P是椭圆内的点,
∴过点P(m,n)的一条直线与椭圆的公共点数为2,
故选:D.

点评 本题考查椭圆的简单性质,注意解题方法的积累,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.用数字0,1,2,3,4,5组成没有重复数字的四位数,其中:
(1)三个偶数字连在一起的四位数有多少个?
(2)十位数字比个位数字大的有多少个?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.某职称考试有A,B两门课程,每年每门课程均分别有一次考试机会,只要在连续两年内两门课程均通过就能获得该职称.某考生准备今年两门课程全部参加考试,预测每门课程今年通过的概率为$\frac{1}{2}$;若两门均没有通过,则明年每门课程通过的概率为$\frac{2}{3}$;若只有一门没过,则明年这门课程通过的概率为$\frac{3}{4}$.
(1)求该考生两年内可获得该职称的概率;
(2)设该考生两年内参加考试的次数为随机变量X,求X的分布列与数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知椭圆C的方程为$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)离心率e=$\frac{1}{2}$,点P(2,3)在椭圆上
(Ⅰ)求椭圆C的方程
(Ⅱ)求过点P的椭圆C的切线方程
(Ⅲ)若从椭圆一个焦点发出的光线照到点P被椭圆反射,证明:反射光线经过另一个焦点.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.方程4x2+ky2=1的曲线是焦点在y上的椭圆,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设F1,F2为椭圆的两焦点,B为椭圆短轴的一个端点,若△BF1F2为正三角形,则椭圆的离心率为(  )
A.$\frac{1}{2}$B.$\frac{\sqrt{2}}{2}$C.$\frac{\sqrt{3}}{2}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知F1,F2为椭圆$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{{b}^{2}}$=1(3>b>0)的左右两个焦点,若存在过焦点F1,F2的圆与直线x+y+2=0相切,则椭圆离心率的最大值为$\frac{2}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.如图,已知直线a∥平面α,在平面α内有一动点P,点A是直线a上一定点,且AP与直线a所成角θ=$\frac{π}{4}$,点A到平面α的距离为2,若过点A作AO⊥α于点O,在平面α内,以过点O作直线a的平行线为x轴,以过点O作x轴的垂线为y轴建立直角坐标系,则动点P的轨迹方程为x2-y2=4..

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.圆x2+y2-2x+4y+3=0的圆心坐标为(  )
A.(-2,4)B.(2,-4)C.(1,-2)D.(-1,2)

查看答案和解析>>

同步练习册答案