精英家教网 > 高中数学 > 题目详情
13.设F1,F2为椭圆的两焦点,B为椭圆短轴的一个端点,若△BF1F2为正三角形,则椭圆的离心率为(  )
A.$\frac{1}{2}$B.$\frac{\sqrt{2}}{2}$C.$\frac{\sqrt{3}}{2}$D.2

分析 利用△BF1F2为正三角形,确定几何量之间的关系,进而可求椭圆的离心率.

解答 解:由题意,设椭圆的半焦距长为c,则
∵△BF1F2为正三角形,
∴b=$\sqrt{3}$c
∴a2-c2=3c2
∴a=2c
∴e=$\frac{c}{a}$=$\frac{1}{2}$
故选:A.

点评 本题考查椭圆的几何性质,考查学生的计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.已知数列{an}中,an>0,且3an+12=an(an-2an+1),a1=1.
(1)求证:数列{an}是等比数列,并求其通项公式;
(2)若bn=$\frac{1}{n}$(log3a1+log3a2+…+log3an),且数列{bn}的前n项和为Tn,求Tn的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,在四棱锥S-ABCD中,底面ABCD为菱形,∠BAD=60°,平面SAD⊥平面ABCD,SA=SD,E,P,Q分别是棱AD,SC,AB的中点.
(Ⅰ)求证:PQ∥平面SAD;
(Ⅱ)求证:AC⊥平面SEQ;
(Ⅲ)如果SA=AB=2,求三棱锥S-ABC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.椭圆$\frac{x^2}{4}+\frac{y^2}{m}=1$的焦距为2,则m的值为(  )
A.3B.$\sqrt{15}$C.3或5D.3或$\sqrt{15}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若直线l:mx+ny=4和圆O:x2+y2=4没有交点,则过点(m,n)的直线与椭圆$\frac{x^2}{9}+\frac{y^2}{4}=1$的交点个数为(  )
A.0个B.至多有一个C.1个D.2个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)的左焦点为F,斜率为$\sqrt{3}$的直线过F与椭圆交于M、N两点,且$\overrightarrow{MF}=2\overrightarrow{FN}$,则椭圆的离心率为(  )
A.$\frac{1}{2}$B.$\frac{{\sqrt{2}}}{2}$C.$\frac{{\sqrt{2}}}{3}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的焦距为4,离心率e=$\frac{{\sqrt{6}}}{3}$.
(I)求椭圆C的标准方程.
(Ⅱ)设F为椭圆C的右焦点,M为直线x=3上任意一点,过F作MF的垂线交椭圆C于点A,B,N为线段AB的中点,
①证明:O、N、M三点共线(其中O为坐标原点);
②求 $\frac{{|{MF}|}}{{|{AB}|}}$的最小值及取得最小值时点M的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知函数f(x)=loga(x+1)(a>0,a≠1)在[0,1]上的值域是[0,1],若函数g(x)=ax-m-4的图象不过第二象限,则m的取值范围是(  )
A.[-2,+∞)B.[-$\frac{1}{2}$,+∞)C.[-1,+∞)D.(-∞,2]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设全集U={-2,-1,0,1,2},集合A={1,2},B={-2,1,2},则A∪(∁UB)等于(  )
A.{-1,0,1,2}B.{1}C.{1,2}D.

查看答案和解析>>

同步练习册答案