精英家教网 > 高中数学 > 题目详情
1.椭圆$\frac{x^2}{4}+\frac{y^2}{m}=1$的焦距为2,则m的值为(  )
A.3B.$\sqrt{15}$C.3或5D.3或$\sqrt{15}$

分析 利用椭圆的定义计算即可.

解答 解:由题可知2c=2$\sqrt{4-m}$=2,
∴m=3或m=5,
故选:C.

点评 本题考查椭圆的简单性质,注意解题方法的积累,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.如图,在四棱锥P-ABCD中,底面ABCD是边长为1的菱形,∠BAD=60°,侧棱PA⊥底面ABCD,E是PC的中点.
(Ⅰ)证明:PA∥平面EBD;
(Ⅱ)若直线PC与平面EBD所成角的大小为60°,求PA的长.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知i为虚数单位,复数z满足(1+2i)z=1-2i,则复数z=-$\frac{3}{5}$$-\frac{4}{5}i$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.在圆x2+y2=4上任取一点P,过点P作x轴的垂线段PD,垂足为D.
(1)当点P在圆上运动时,线段PD的中点的轨迹C的方程;
(2)若M(x,y)是轨迹C上的动点,求x2-12y的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知椭圆C的方程为$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)离心率e=$\frac{1}{2}$,点P(2,3)在椭圆上
(Ⅰ)求椭圆C的方程
(Ⅱ)求过点P的椭圆C的切线方程
(Ⅲ)若从椭圆一个焦点发出的光线照到点P被椭圆反射,证明:反射光线经过另一个焦点.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,已知椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的左右焦点分别为F1,F2,离心率为$\frac{{\sqrt{2}}}{2}$,它的四个顶点连成的菱形的面积为8$\sqrt{2}$.过动点P(不在x轴上)的直线PF1,PF2与椭圆的交点分别为A,B和C,D.
(1)求此椭圆的标准方程;
(2)是否存在点P,使|AB|=2|CD|,若存在求出点P的坐标;若不存在,请说明理由.
(3)若点P在双曲线$\frac{x^2}{4}-\frac{y^2}{2}$=1(除顶点外)上运动,证明:|AB|+|CD|为定值,并求出此定值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设F1,F2为椭圆的两焦点,B为椭圆短轴的一个端点,若△BF1F2为正三角形,则椭圆的离心率为(  )
A.$\frac{1}{2}$B.$\frac{\sqrt{2}}{2}$C.$\frac{\sqrt{3}}{2}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1与双曲线5x2-$\frac{5}{4}$y2=1有相同的焦点,且二者的离心率之积是1.
(Ⅰ)求椭圆C的方程;
(Ⅱ)若斜率为1的直线交椭圆C于A、B两点,求$\overrightarrow{OA}$•$\overrightarrow{OB}$的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知F1、F2是椭圆的两个焦点,以线段F1F2为边作正△MF1F2,若边MF1的中点在此椭圆上,则此椭圆的离心率为(  )
A.$\frac{\sqrt{3}-1}{2}$B.$\sqrt{2}$-1C.$\frac{\sqrt{2}}{2}$D.$\sqrt{3}$-1

查看答案和解析>>

同步练习册答案