精英家教网 > 高中数学 > 题目详情
9.在圆x2+y2=4上任取一点P,过点P作x轴的垂线段PD,垂足为D.
(1)当点P在圆上运动时,线段PD的中点的轨迹C的方程;
(2)若M(x,y)是轨迹C上的动点,求x2-12y的最大值.

分析 (1)通过设C(x,y)可得P(x,2y),代入圆的方程计算即得结论;
(2)通过M(x,y)满足$\frac{{x}^{2}}{4}+{y}^{2}=1$,变形化简即得结论.

解答 解:(1)设C(x,y),则P(x,2y),
∵点P在圆上运动时,
∴x2+(2y)2=4,即$\frac{{x}^{2}}{4}+{y}^{2}=1$;
(2)∵M(x,y)是轨迹C上的动点,
∴$\frac{{x}^{2}}{4}+{y}^{2}=1$,
∴x2+12y=4-4y2+12y,其中-1≤y≤1,
∴当y=1时,x2+12y有最大值12.

点评 本题考查椭圆的简单性质,注意解题方法的积累,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.在△ABC中,a、b、c分别是A、B、C的对边,且a2+c2-b2+ac=0
(1)求角B的大小;
(2)若△ABC中sinC=2sinA,且b=$\sqrt{14}$,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.函数y=f(x)图象如图所示,则函数的单调减区间为(  )
A.[-3,3]B.[-1,2]C.[-3,-1]D.[2,3]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,四棱锥P-ABCD中,底面ABCD为平行四边形,∠DAB=60°,AB=2AD=2,PD⊥底面ABCD,E为棱PC的中点.
(1)PA∥平面BDE;
(2)证明:PA⊥BD.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,在四棱锥S-ABCD中,底面ABCD为菱形,∠BAD=60°,平面SAD⊥平面ABCD,SA=SD,E,P,Q分别是棱AD,SC,AB的中点.
(Ⅰ)求证:PQ∥平面SAD;
(Ⅱ)求证:AC⊥平面SEQ;
(Ⅲ)如果SA=AB=2,求三棱锥S-ABC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知过点M (2,1)的直线l和椭圆x2+4y2=36相交于点A、B,且线段AB恰好以M为中点,求直线l的方程和线段AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.椭圆$\frac{x^2}{4}+\frac{y^2}{m}=1$的焦距为2,则m的值为(  )
A.3B.$\sqrt{15}$C.3或5D.3或$\sqrt{15}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)的左焦点为F,斜率为$\sqrt{3}$的直线过F与椭圆交于M、N两点,且$\overrightarrow{MF}=2\overrightarrow{FN}$,则椭圆的离心率为(  )
A.$\frac{1}{2}$B.$\frac{{\sqrt{2}}}{2}$C.$\frac{{\sqrt{2}}}{3}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知A,B是△ABC的两个内角,$\overrightarrow{a}$=($\sqrt{2}$cos$\frac{A+B}{2}$,sin$\frac{A-B}{2}$),若|$\overrightarrow{a}$|=$\frac{\sqrt{6}}{2}$.
(1)求tanA•tanB的值;
(2)求tanC的最大值,并判断此时三角形的形状.

查看答案和解析>>

同步练习册答案