精英家教网 > 高中数学 > 题目详情
2.已知函数f(x)=loga(x+1)(a>0,a≠1)在[0,1]上的值域是[0,1],若函数g(x)=ax-m-4的图象不过第二象限,则m的取值范围是(  )
A.[-2,+∞)B.[-$\frac{1}{2}$,+∞)C.[-1,+∞)D.(-∞,2]

分析 对a分类讨论:利用对数函数的单调性可得a=2.由于函数g(x)=2x-m-4的图象不过第二象限,可得g(0)≤0,解出即可.

解答 解:当a>1时,函数f(x)在[0,1]上单调递增,∴loga1=0,loga2=1,解得a=2.
当0<a<1时,函数f(x)在[0,1]上单调递减,∴loga1=1,loga2=0,舍去.
故a=2.
∵函数g(x)=2x-m-4的图象不过第二象限,
∴g(0)=2-m-4≤0,
∴-m≤2,
解得m≥-2.
故选:A.

点评 本题考查了指数函数与对数函数的单调性,考查了数形结合的思想方法、推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.已知i为虚数单位,复数z满足(1+2i)z=1-2i,则复数z=-$\frac{3}{5}$$-\frac{4}{5}i$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设F1,F2为椭圆的两焦点,B为椭圆短轴的一个端点,若△BF1F2为正三角形,则椭圆的离心率为(  )
A.$\frac{1}{2}$B.$\frac{\sqrt{2}}{2}$C.$\frac{\sqrt{3}}{2}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1与双曲线5x2-$\frac{5}{4}$y2=1有相同的焦点,且二者的离心率之积是1.
(Ⅰ)求椭圆C的方程;
(Ⅱ)若斜率为1的直线交椭圆C于A、B两点,求$\overrightarrow{OA}$•$\overrightarrow{OB}$的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.如图,已知直线a∥平面α,在平面α内有一动点P,点A是直线a上一定点,且AP与直线a所成角θ=$\frac{π}{4}$,点A到平面α的距离为2,若过点A作AO⊥α于点O,在平面α内,以过点O作直线a的平行线为x轴,以过点O作x轴的垂线为y轴建立直角坐标系,则动点P的轨迹方程为x2-y2=4..

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知m、n是两条不同的直线,α、β是两个不同的平面,则下列命题正确的是(  )
A.若m∥n,m∥α且n∥β,则α∥β??????????
B.若m⊥n,m∥α且n∥β,则α⊥β?
C.若m∥α且n⊥m,则n⊥α????????????????????
D.若m⊥n,m⊥α且n⊥β,则α⊥β

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.一个几何体的三视图如图所示,则这个几何体的体积为(  )
A.$\frac{(8+π)\sqrt{3}}{6}$B.$\frac{(12+π)\sqrt{3}}{6}$C.$\frac{(12+π)\sqrt{3}}{2}$D.$\frac{(6+π)\sqrt{3}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知F1、F2是椭圆的两个焦点,以线段F1F2为边作正△MF1F2,若边MF1的中点在此椭圆上,则此椭圆的离心率为(  )
A.$\frac{\sqrt{3}-1}{2}$B.$\sqrt{2}$-1C.$\frac{\sqrt{2}}{2}$D.$\sqrt{3}$-1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.f(x)是以5为周期的奇函数,f(-3)=4,且cos$α=\frac{1}{3}$,则f(9cos2α)=-4.

查看答案和解析>>

同步练习册答案