精英家教网 > 高中数学 > 题目详情
12.f(x)是以5为周期的奇函数,f(-3)=4,且cos$α=\frac{1}{3}$,则f(9cos2α)=-4.

分析 由二倍角公式可得cos2α=2cos2α-1=-$\frac{7}{9}$;再由函数的奇偶性与周期性求函数值.

解答 解:∵cos$α=\frac{1}{3}$,
∴cos2α=2cos2α-1=-$\frac{7}{9}$;
∴f(9cos2α)=f(-7),
又∵f(x)是以5为周期的奇函数,f(-3)=4;
∴f(-7)=f(3)=-f(-3)=-4;
故答案为:-4.

点评 本题考查了三角恒等式的应用及函数的性质应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.已知函数f(x)=loga(x+1)(a>0,a≠1)在[0,1]上的值域是[0,1],若函数g(x)=ax-m-4的图象不过第二象限,则m的取值范围是(  )
A.[-2,+∞)B.[-$\frac{1}{2}$,+∞)C.[-1,+∞)D.(-∞,2]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设全集U={-2,-1,0,1,2},集合A={1,2},B={-2,1,2},则A∪(∁UB)等于(  )
A.{-1,0,1,2}B.{1}C.{1,2}D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图所示,已知圆C:(x+1)2+y2=8,定点A(1,0),M为圆上一动点,点P在线段AM上,点N在CM上,且满足$\overrightarrow{AM}$=2$\overrightarrow{AP}$,$\overrightarrow{NP}$•$\overrightarrow{AM}$=0,点N的轨迹为曲线E.求曲线E的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设a∈[0,4],则使方程x2+ax+1=0有解的概率为(  )
A.$\frac{1}{4}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知$\overrightarrow{m}$=(3cosx,$\sqrt{3}$sinx),$\overrightarrow{n}$=(2cosx,-2cosx),函数f(x)=$\overrightarrow{m}•\overrightarrow{n}$
(1)求f(x)的最小正周期和单调减区间
(2)在△ABC中,锐角B满足f(B)=0,b=2,求a+c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知数据x1,x2,…,x10的方差为1,且(x1-2)2+(x2-2)2+(x3-2)2+…+(x10-2)2=170,则数据x1.x2,x3,…,x10的平均数是-2或6.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,在直角梯形SABC中,∠B=∠C=$\frac{π}{2}$,D为边SC上的点,且AD⊥SC,现将△SAD沿AD折起到达PAD的位置(折起后点S记为P),并使得PA⊥AB.
(1)求证:PD⊥平面ABCD;
(2)已知PD=AD,PD+AD+DC=6,G是AD的中点,当线段PB取得最小值时,则在平面PBC上是否存在点F,使得FG⊥平面PBC?若存在,确定点F的位置,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.若函数y=3sin(-2x+φ-$\frac{π}{4}$)为偶函数,则φ的取值范围为{φ|φ=kπ+$\frac{3π}{4}$,k∈z }.

查看答案和解析>>

同步练习册答案