精英家教网 > 高中数学 > 题目详情
14.已知正三角形ABC的顶点A,B在抛物线y2=4x上,另一个顶点C(4,0),则这样的正三角形有(  )
A.1个B.2个C.3个D.4个

分析 根据题意和抛物线以及正三角形的对称性,可推断出两个边的斜率,进而表示出这两条直线,每条直线与抛物线均有两个交点,焦点两侧的两交点连接,分别构成一个等边三角形,可知当等边三角形关于x轴轴对称时,有两个.

解答 解:由题意,当等边三角形关于x轴轴对称时
两个边的斜率k=±tan30°=±$\frac{\sqrt{3}}{3}$,其方程为:
y=±$\frac{\sqrt{3}}{3}$(x-4),
每条直线与抛物线均有两个交点,焦点两侧的两交点连接,分别构成一个等边三角形,这样的正三角形有2个,图中黑色的两个.
两个顶点同时在抛物线上方如图中蓝色,或同时在下方各一个如图中绿色,
故选D.

点评 本题主要考查了抛物线的简单性质和数形结合思想,主要是利用抛物线和正三角形的对称性.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.设f'(x)是函数f(x)(x∈R)的导数,且满足xf'(x)-2f(x)>0,若△ABC中,∠C是钝角,则(  )
A.f(sinA)•sin2B>f(sinB)•sin2AB.f(sinA)•sin2B<f(sinB)•sin2A
C.f(cosA)•sin2B>f(sinB)•cos2AD.f(cosA)•sin2B<f(sinB)•cos2A

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.在△ABC中,D为三角形所在平面内一点,且$\overrightarrow{AD}=\frac{1}{3}\overrightarrow{AB}+\frac{1}{2}\overrightarrow{AC}$,则$\frac{{{S_{△BCD}}}}{{{S_{△ABD}}}}$=(  )
A.$\frac{1}{6}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知实数x,y满足$\left\{\begin{array}{l}x+y≤10\\ 3x+y≤18\\ x≥0\\ y≥0\end{array}\right.$,则$z=x+\frac{y}{2}$的最大值为7.

查看答案和解析>>

科目:高中数学 来源:2017届湖南长沙长郡中学高三上周测十二数学(理)试卷(解析版) 题型:选择题

已知定义在内的函数满足,当时,则当时,方程的不等实数根的个数是( )

A.3 B.4 C.5 D.6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.某校举行运动会,其中三级跳远的成绩在8.0米(四舍五入,精确到0.1米)以上的进入决赛,把所得数据进行整理后,分成6组画出频率分布直方图的一部分(如图),已知从左到右前5个小组的频率分别为0.04,0.10,0.14,0.28,0.30,第6小组的频数是7.
(Ⅰ)求进入决赛的人数;
(Ⅱ)若从该校学生(人数很多)中随机抽取两名,记X表示两人中进入决赛的人数,求X的分布列及数学期望;
(Ⅲ)经过多次测试后发现,甲成绩均匀分布在8~10米之间,乙成绩均匀分布在9.5~10.5米之间,现甲,乙各跳一次,求甲比乙远的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知f(x)满足对?x∈R,f(-x)+f(x)=0,且当x≤0时,f(x)=$\frac{1}{{e}^{x}}$+k(k为常数),则f(ln5)的值为(  )
A.4B.-4C.6D.-6

查看答案和解析>>

科目:高中数学 来源:2017届湖南长沙长郡中学高三上周测十二数学(理)试卷(解析版) 题型:选择题

不透明的袋子内装有相同的5个小球,分别标有1-5五个编号,现有放回的随机摸取三次,则摸出的三个小球的编号乘积能被10整除的概率为( )

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知函数f(x)=ax2+bx+c(a≠0)是偶函数,则函数g(x)=ax3+bx2+cx是(  )
A.奇函数B.偶函数
C.非奇非偶函数D.既是奇函数又是偶函数

查看答案和解析>>

同步练习册答案