精英家教网 > 高中数学 > 题目详情
20.在锐角△ABC中,AB=2$\sqrt{5}$,AC=2,△ABC的面积是4,则sinA=$\frac{2\sqrt{5}}{5}$,BC=4.

分析 由已知及三角形面积公式可得4=$\frac{1}{2}×2\sqrt{5}×2×sinA$,从而可解得sinA,由A为锐角,可得:cosA,由余弦定理即可解得BC的值.

解答 解:由已知及三角形面积公式可得:4=$\frac{1}{2}×2\sqrt{5}×2×sinA$,
可解得:sinA=$\frac{2\sqrt{5}}{5}$,
由A为锐角,可得:cosA=$\sqrt{1-si{n}^{2}A}$=$\frac{\sqrt{5}}{5}$,
由余弦定理可得:BC2=AB2+AC2-2•AB•AC•cosA=20+4-2×$2\sqrt{5}×2×\frac{\sqrt{5}}{5}$=16,
故BC=4.
故答案为:$\frac{2\sqrt{5}}{5}$,4.

点评 本题主要考查了同角三角函数关系式的应用,余弦定理的应用,属于基本知识的考查.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.定义运算“•”如下:x•y=$\left\{\begin{array}{l}{x,x≥y}\\{y,x<y}\end{array}\right.$,若函数f(x)=m-(1-2x)•(2x-2)有两个零点,则(  )
A.m∈(-$\frac{1}{2}$,+∞)B.m∈(-$\frac{1}{2}$,1)C.m∈[-$\frac{1}{2}$,+∞)D.m∈[-$\frac{1}{2}$,1)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.对于⊙A:x2+y2-2x=0,以点($\frac{1}{2}$,$\frac{1}{2}$)为中点的弦所在的直线方程是x-y=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.g(x)=$\sqrt{2}$2x-1,g(x)≤t2-2mt+1对所有的x∈[-1,1]及m∈[-1,1]恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知a>0且a≠1,命题“?x>1,logax>0”的否定是(  )
A.?x≤1,logax>0B.?x>1,loga≤0C.?x≤1,logax>0D.?x>1,logax≤0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.长时间用手机上网严重影响着学生的身体健康,某校为了解A,B两班学生手机上网的时长,分别从这两个班中随机抽取5名同学进行调查,将他们平均每周手机上网的时长作为样本,绘制成茎叶图如图所示(图中的茎表示十位数字,叶表示个位数字).
(Ⅰ)分别求出图中所给两组样本数据的平均值,并据此估计,哪个班的学生平均上网时间较长;
(Ⅱ)从A班的样本数据中随机抽取一个不超过21的数据记为a,从B班的样本数据中随机抽取一个不超过21的数据记为b,求a>b的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.若{an}是一个各项都为正数的无穷递增等比数列,a1和a3是方程x2-5x+4=0的两个根,求此数列的通项公式an与前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设函数f(x)=lnx,h(x)=f(x)+mf′(x).
(1)求函数h(x)单调区间;
(2)当m=e(e为自然对数的底数)时,若h(n)-h(x)<$\frac{e}{n}$对?x>0恒成立,求实数n的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.设不等式组$\left\{\begin{array}{l}{x+y-3≥0}\\{2x-y≥0}\\{x-2≤0}\end{array}\right.$,表示的平面区域为D,若直线mx+y+m=0上存在区域D上的点,则实数m的取值范围是$-\frac{4}{3}≤m≤-\frac{1}{3}$.

查看答案和解析>>

同步练习册答案