精英家教网 > 高中数学 > 题目详情
10.已知函数f(x)是定义在区间[0,+∞)上的增函数,则满足f(2x-1)<f($\frac{1}{3}$)的x的取值范围是[$\frac{1}{2},\frac{2}{3}$).

分析 由函数f(x)是定义在区间[0,+∞)上的增函数,利用f(2x-1)<f($\frac{1}{3}$),列出不等式驵,能求出结果.

解答 解:∵函数f(x)是定义在区间[0,+∞)上的增函数,
f(2x-1)<f($\frac{1}{3}$),
∴$\left\{\begin{array}{l}{2x-1≥0}\\{2x-1<\frac{1}{3}}\end{array}\right.$,解得$\frac{1}{2}≤x<\frac{2}{3}$.
∴满足f(2x-1)<f($\frac{1}{3}$)的x的取值范围是[$\frac{1}{2},\frac{2}{3}$).
故答案为:[$\frac{1}{2}$,$\frac{2}{3}$).

点评 本题考查不等式的解集的求法,是基础题,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.将序号分别为1,2,3,4,5的5张参观券全部分给3人,每人至少1张至多2张,如果分给同一人的2张参观券连号,那么不同的分法种数是18.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知复数z=$\frac{{4+\sqrt{2}i}}{1-i}$,i为虚数单位,则|z|=(  )
A.9B.3C.$\frac{{3\sqrt{2}}}{2}$D.9$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.如图所示的韦恩图中,全集U=R,若A={x|0≤x<2},B={x|x>1},则阴影部分表示的集合为(  )
A.{x|x>1}B.{x|1<x<2}C.{x|x>2}D.{x|x≥2}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.某校共有高中、初中、小学学生4000名,其中小学生1600名,初中生人数是高中生人数的2倍,现用分层抽样的方法抽取一个样本来调查学生每天的课外阅读量.已知样本中小学生共有32人,则该样本中,高中生的人数是16.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知函数y=f(x)的导函数为f'(x)=cosx-5,且f(0)=0,如果f(1-ax)+f(1-ax2)<0恒成立,则实数a的取值范围是(-8,0].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.不等式|x-3|+|x-2|≥3的解集是(  )
A.{x|x≥3或x≤1}B.{x|x≥4或x≤2}C.{x|x≥2或x≤1}D.{x|x≥4或x≤1}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知$cos({\frac{π}{2}+α})=2sin({α-\frac{π}{2}})$求$\frac{{sin({π-α})+cos({α+π})}}{{5cos({\frac{5π}{2}-α})+3sin({\frac{7π}{2}-α})}}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,在△ABC中,D,E分别为BC,AB的中点,F为AD的中点.
(1)试用$\overrightarrow{AB}$,$\overrightarrow{AC}$表示$\overrightarrow{CE}$,$\overrightarrow{AF}$;
(2)若AB=2,AC=1,∠BAC=60°,求$\overrightarrow{AB}$$•\overrightarrow{AC}$,$\overrightarrow{CE}$$•\overrightarrow{AF}$.

查看答案和解析>>

同步练习册答案