分析 由函数f(x)是定义在区间[0,+∞)上的增函数,利用f(2x-1)<f($\frac{1}{3}$),列出不等式驵,能求出结果.
解答 解:∵函数f(x)是定义在区间[0,+∞)上的增函数,
f(2x-1)<f($\frac{1}{3}$),
∴$\left\{\begin{array}{l}{2x-1≥0}\\{2x-1<\frac{1}{3}}\end{array}\right.$,解得$\frac{1}{2}≤x<\frac{2}{3}$.
∴满足f(2x-1)<f($\frac{1}{3}$)的x的取值范围是[$\frac{1}{2},\frac{2}{3}$).
故答案为:[$\frac{1}{2}$,$\frac{2}{3}$).
点评 本题考查不等式的解集的求法,是基础题,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是基础题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 9 | B. | 3 | C. | $\frac{{3\sqrt{2}}}{2}$ | D. | 9$\sqrt{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {x|x>1} | B. | {x|1<x<2} | C. | {x|x>2} | D. | {x|x≥2} |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {x|x≥3或x≤1} | B. | {x|x≥4或x≤2} | C. | {x|x≥2或x≤1} | D. | {x|x≥4或x≤1}. |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com