精英家教网 > 高中数学 > 题目详情
19.已知向量$\overrightarrow{a}$=(1,2),$\overrightarrow{b}$=(1,1).若向量$\overrightarrow{b}$⊥($\overrightarrow{a}$+λ$\overrightarrow{b}$),则实数λ的值是-$\frac{3}{2}$.

分析 根据向量的坐标运算和向量的数量积运算计算即可

解答 解:∵向量$\overrightarrow{a}$=(1,2),$\overrightarrow{b}$=(1,1).
∴$\overrightarrow{a}$+λ$\overrightarrow{b}$=(1+λ,2+λ),
∵$\overrightarrow{b}$⊥($\overrightarrow{a}$+λ$\overrightarrow{b}$),
∴$\overrightarrow{b}$•($\overrightarrow{a}$+λ$\overrightarrow{b}$)=1+λ+2+λ=0,
解得λ=-$\frac{3}{2}$,
故答案为:-$\frac{3}{2}$

点评 本题考查了向量的坐标运算和向量的数量积运算,属于基础题

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.五名同学站成一排,若甲与乙相邻,且甲与丙不相邻,则不同的站法有(  )
A.36种B.60种C.72种D.108种

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.A={x∈N|2≤x≤4},B={x∈Z|x2-2x-3<0},则A∩B=(  )
A.{x|2≤x<3}B.{x|2≤x≤3}C.{2}D.{2,3}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知向量$\overrightarrow m=(\sqrt{3}sintx,-{cos^2}tx),\overrightarrow n=(costx,1)(t>0)$,把函数f(x)=$\overrightarrow m•\overrightarrow n+\frac{1}{2}$化简为f(x)=Asin(ωx+ϕ)+B的形式后,利用“五点法”画y=f(x)在某一个周期内的图象时,列表并填入的部分数据如下表所示:
(1)请直接写出①处应填的值,并求t的值及函数y=f(x)在区间$[-\frac{π}{2},\frac{π}{6}]$上的单增区间、单减区间;
(2)设△ABC的内角A,B,C所对的边分别为a,b,c,已知$f(\frac{A}{2}+\frac{π}{6})=1,c=2,a=\sqrt{7}$,求$\overrightarrow{BA}•\overrightarrow{BC}$
x$\frac{π}{12}$$\frac{7π}{12}$
ωx+ϕ0$\frac{π}{2}$$\frac{3π}{2}$
f(x)010-10

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设集合$M=\{y|y={x^{-2}}\},P=\{x|y=\sqrt{x-1}\},则P∩M$(  )
A.(1,+∞)B.[1,+∞)C.(0,+∞)D.[0,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=xlnx,g(x)=-x2+ax-2
(Ⅰ)求函数f(x)在[t,t+2](t>0)上的最小值;
(Ⅱ)设函数F(x)=f(x)-g(x),若函数F(x)的零点有且只有一个,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知命题p:?x0∈R,x02+(a-1)x0+1<0,命题q:?x∈R,x2+ax+1≥0,p∨(¬q)为假命题,则实数a的取值范围是(  )
A.[-2,-1]B.(-1,3)C.(-2,-1)D.[-1,2]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.定义在R上的奇函数y=f(x)满足f(4)=0,且当x>0时,不等式f(x)<xf′(x)恒成立,则函数g(x)=$\frac{f(x)}{x}$+e|x|-1的零点的个数为2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.把函数y=sin x(x∈R)的图象上所有点的横坐标变为原来的2倍(纵坐标不变),再把所得图象上所有点向左平移$\frac{π}{3}$个单位长度,得到图象的函数解析式为(  )
A.y=sin(2x-$\frac{π}{3}$)B.y=sin(2x+$\frac{π}{3}$)C.y=sin($\frac{1}{2}$x+$\frac{π}{6}$)D.y=sin($\frac{1}{2}$x+$\frac{π}{3}$)

查看答案和解析>>

同步练习册答案