精英家教网 > 高中数学 > 题目详情
计算:
1
log23
+
1
log53
考点:对数的运算性质
专题:函数的性质及应用
分析:利用对数的换底公式和运算法则求接求解.
解答: 解:
1
log23
+
1
log53

=log32+log35
=log310.
点评:本题考查对数的运算性质和运算法则的应用,是基础题,解题时要注意对数的换底公式的应用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
2x+1
2x+1-1
,若函数y=g(x+1)的图象与函数y=f(x)的图象关于直线y=x对称,则g-1(3)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

对于函数f(x)=
sinx(sinx≤cosx)
cosx(sinx>cosx)
,下列说法正确的是(  )
A、f(x)的值域是[-1,1]
B、当且仅当x=(2k+1)π(k∈Z)时,f(x)取得最小值-1
C、f(x)的最小正周期是π
D、当且仅当2kπ<x<2kπ+
π
2
(k∈Z)
时,f(x)>0

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是定义域为R的奇函数,给出下列6个函数:
①g(x)=
sinx(1-sinx)
1-sinx

②g(x)=sin(
5
2
π+x);
③g(x)=
1+sinx-cosx
1+sinx+cosx

④g(x)=lgsinx;
⑤g(x)=lg(
x2+1
+x
);
⑥g(x)=
2
ex+1
-1

其中可以使函数F(x)=f(x)•g(x)是偶函数的函数是(  )
A、①⑥B、①⑤C、⑤⑥D、③⑤

查看答案和解析>>

科目:高中数学 来源: 题型:

已知cos(α-
β
2
)=-
1
9
,sin(
α
2
)=
2
3
α∈(
π
2
,π)
β∈(0,
π
2
)

(1)求cos(
α+β
2
);
(2)求tan(α+β).

查看答案和解析>>

科目:高中数学 来源: 题型:

化简(x 
1
2
-x
1
4
+1
)(x 
1
2
+x
1
4
+1
)(x-x 
1
2
+1)

查看答案和解析>>

科目:高中数学 来源: 题型:

解不等式:1<|x2-4x|<3.

查看答案和解析>>

科目:高中数学 来源: 题型:

某企业某年年初建厂生产某种产品,其年产量为y件,每件产品的利润为2200元,建厂年数为x,y与x的函数关系式为y=-2x2+40x+50.由于设备老化,从2011年起,年产量开始下滑.若该企业2012年投入100万元用于更换所有设备,则预计当年可生产产品122件,且以后每年都比上一年增产14件.
(1)若更换设备后,至少几年可收回投入成本?
(2)试写出更换设备后,年产量Q件与企业建厂年数x的函数关系式;并求出,到哪一年年产量可超过假定设备没有更换的年产量?

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数y=Asin(ωx+φ)+C(A>0,ω>0,φ>0)图象的最高点是(12,4),最低点是(x,-2),求C和A的值.

查看答案和解析>>

同步练习册答案