精英家教网 > 高中数学 > 题目详情
12.用一个边长为2$\sqrt{2}$的正方形硬纸板,按各边中点垂直折起四个小三角形,做成一个蛋巢,半径为2的鸡蛋(视为球体)放入其中,则鸡蛋中心(球心)与蛋巢底面的距离为(  )
A.$\sqrt{3}+1$B.1C.$\sqrt{2}+1$D.3

分析 蛋槽的边长是原来硬纸板的对角线长度的一半,为2,蛋槽立起来的小三角形部分高度是1,鸡蛋的半径为2,直径为4,大于折好的蛋巢边长2,由此能求出鸡蛋中心(球心)与蛋巢底面的距离.

解答 解:蛋槽的边长是原来硬纸板的对角线长度的一半,为2,
蛋槽立起来的小三角形部分高度是1,
鸡蛋的半径为2,直径为4,大于折好的蛋巢边长2,四个三角形的顶点所在的平面在鸡蛋表面所截取的小圆直径就是蛋槽的边长2,
根据图示,AB段由三角形AB求出得:AB=$\sqrt{3}$,
AE=AB+BE=$\sqrt{3}$+1,
∴鸡蛋中心(球心)与蛋巢底面的距离为$\sqrt{3}$+1.
故选:A.

点评 本题考查点、线、面间距离的计算,解题时要认真审题,注意挖掘题设中的隐含条件,合理地化空间问题为平面问题,注意数形结合法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.在平面直角坐标系中,已知:A(3,0),B(0,4),O为坐标原点,以点P为圆心的圆P半径为1.
①点P 坐标为P(1,2),试判断圆P与△OAB三边的交点个数;
②动点P在△OAB内运动,圆P与△OAB的三边有四个交点,求P点形成区域的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.某市2014年4月1日~4月30日对空气污染指数的监测数据如下(主要污染物为可吸入颗粒物):
61,76,70,56,81,91,92,91,75,81,88,67,101,103,95,
91,77,86,81,83,82,82,64,79,86,85,75,71,49,45.
(1)在答题卷上完成频率分布表;
(2)在答题卷上作出频率分布直方图;
(3)根据频率分布直方图求出空气污染指数的中位数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.从A,B,C,D,E5名学生中选出4名分别参加数学、物理、化学、外语竞赛,其中A不参加物理、化学竞赛,则不同的参赛方案种数为(  )
A.24B.48C.72D.120

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知全集U=R,集合A={x|y=log2(x2+3x-10)},B={x|-2≤x≤5},则(∁UA)∩B等于(  )
A.{x|-5<x≤2}B.{x|-2<x≤5}C.{x|-2≤x≤2}D.{x|-5≤x≤5}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知椭圆G:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的离心率为$\frac{{\sqrt{3}}}{2}$,过其右焦点与长轴垂直的弦长为1,如图,A,B是椭圆的左右顶点,M是椭圆上位于x轴上方的动点,直线AM,BM与直线l:x=4分别交于C,D两点.
(Ⅰ)求椭圆G的标准方程;
(Ⅱ)若|CD|=4,求点M的坐标;
(Ⅲ)记△MAB和△MCD的面积分别为S1和S2,若λ=$\frac{{S}_{1}}{{S}_{2}}$,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.如果3x-2(x-1)<2-x,那么|x-1|-(1-x)的值是0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.终边在y轴的非负半轴上的角的集合是(  )
A.{x|x=k•180°,k∈Z}B.{x|x=k•180°+90°,k∈Z}
C.{x|x=k•360°,k∈Z}D.{x|x=k•360°+90°,k∈Z}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知椭圆$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{25}$=1上一点P到椭圆一个焦点的距离为7,则点P到另一个焦点的距离为(  )
A.1B.2C.15D.3

查看答案和解析>>

同步练习册答案