11£®Ä³ÊÐÔ°ÁÖ¹ÜÀí´¦ÎªÁËÁ˽âÔÚijƬÍÁµØÉÏÅàÓýµÄÊ÷ÃçµÄÉú³¤Çé¿ö£¬ÔÚÊ÷ÃçÖÖÖ²Ò»Äêºó£¬´ÓÖÐËæ»ú³éÈ¡10Ö꣬²âµÃËüÃǵĸ߶ȣ¨µ¥Î»£ºcm£©£¬²¢½«Êý¾ÝÓþ¥Ò¶Í¼±íʾ£¨Èçͼ£©£¬ÒÑÖªx¡Ê[6£¬9]£¬ÇÒx¡ÊN£®
£¨¢ñ£© ÈôÕâ10ÖêÊ÷ÃçµÄƽ¾ù¸ß¶ÈΪ130cm£¬ÇóxÖµ£»
£¨¢ò£©ÏִӸ߶ÈÔÚ[130£¬140£©ºÍ[140£¬150£©ÄÚµÄÊ÷ÃçÖÐËæ»ú³éÈ¡Á½Ö꣬ÈôÕâÁ½ÖêÊ÷ÃçÆ½¾ù¸ß¶È²»¸ßÓÚ139cmµÄ¸ÅÂÊΪ$\frac{1}{2}$£¬ÇóxµÄ¿ÉÄÜȡֵ£®

·ÖÎö £¨¢ñ£©½áºÏ¾¥Ò¶Í¼ºÍƽ¾ùÊýµÄÇ󷨽øÐмÆË㣻
£¨¢ò£©Éèz=140+x£®´Ó¸ß¶ÈÔÚ[130£¬140£©ºÍ[140£¬150£©ÄÚµÄÊ÷ÃçÖÐËæ»ú³éÈ¡Á½ÖêÓÐ10ÖÐÑ¡·¨£®½áºÏ¡°ÕâÁ½ÖêÊ÷ÃçÆ½¾ù¸ß¶È²»¸ßÓÚ139cm¸ÅÂÊΪ$\frac{1}{2}$¡±µÃµ½$\frac{132+z}{2}$¡Ü139£¬ÓÉ´ËÇóµÃzµÄÖµ£®

½â´ð ½â£º£¨¢ñ£©Éè¸ß¶È¸ßÔÚ[140£¬150£©µÄÁíÒ»Öê¸ß¶ÈΪy£¨ÆäÖÐy=140+x£©£¬
ÓÉ$\frac{114+116+122+124+128+136+134+132+146+y}{10}$=130£¬
µÃy=148£¬ÓÚÊÇx=8£® 
£¨¢ò£©ÓÉÌâÖª£¬´Ó¸ß¶ÈÔÚ[130£¬140£©ºÍ[140£¬150£©ÄÚµÄÊ÷ÃçÖÐËæ»úѡȡÁ½ÖêÓÐÒÔÏÂ10ÖÖÑ¡·¨£º
£¨132£¬134£©£¬£¨132£¬136£©£¬£¨134£¬136£©£¬£¨132£¬146£©£¬£¨134£¬146£©£¬£¨136£¬146£©£¬
£¨132£¬z£©£¬£¨134£¬z£©£¬£¨136£¬z£©£¬£¨146£¬z£©£¨ÆäÖÐz=140+x£©£¬
ÔòǰÁù×éµÄƽ¾ùÊý·Ö±ðΪ133£¬134£¬135£¬139£¬140£¬141£¬ÓÐ4×鯽¾ù¸ß¶È²»¸ßÓÚ139£¬
ÓÉÓÚp=$\frac{1}{2}$£¬ºóËÄ×éÖÐÖ»ÄÜÓÐÒ»×éµÄƽ¾ù¸ß¶È²»¸ßÓÚ139£¬ÏÔÈ»ÊÇ£¨132£¬z£©ÕâÒ»×éÂú×ãÌâÒ⣮
ÓÖÓÉ$\frac{132+z}{2}$¡Ü139£¬µÃz¡Ü146£¬×¢Òâµ½x¡Ê[6£¬9]£¬ÓÚÊÇx=6£®

µãÆÀ ±¾Ì⿼²éÁ˾¥Ò¶Í¼£¬Áоٷ¨¼ÆËã»ù±¾Ê¼þÊý¼°Ê¼þ·¢ÉúµÄ¸ÅÂÊ£®¸ù¾Ýи߿¼·þÎñÓÚн̲ĵÄÔ­Ôò£¬×÷Ϊн̲ĵÄÐÂÔöÄÚÈÝ--¡°¾¥Ò¶¡±Í¼ÊÇи߿¼µÄÖØÒª¿¼µã£¬Í¬Ê±£¨2£©ÖиÅÂʵļÆËãÒ²ÊǸ߿¼µÄÈȵ㣮¶ÔÓÚ¡°¾¥Ò¶Í¼¡±Ñ§Ï°µÄ¹Ø¼üÊÇѧ»á»­Í¼¡¢¿´Í¼ºÍÓÃͼ£¬¶ÔÓÚ¸ÅÂÊÒª¶àÁ·Ï°Ê¹ÓÃÁоٷ¨±íʾÂú×ãÌõ¼þµÄ»ù±¾Ê¼þ¸öÊý£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®Èçͼ£¬ÔÚËÄÀâ×¶P-ABCDÖУ¬PA¡Íµ×ÃæABCD£¬µ×ÃæABCDÊDZ߳¤Îª2µÄÁâÐΣ¬¡ÏBAD=60¡ã£¬EÊÇPCµÄÖе㣮
£¨1£©ÇóÖ¤£ºPC¡ÍBD£»
£¨2£©ÈôËÄÀâ×¶P-ABCDµÄÌå»ýΪ4£¬ÇóDEÓëÆ½ÃæPACËù³É½ÇµÄ´óС£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

2£®ÒÑÖª¸´ÊýzÂú×ãz£¨1+i£©=1£¨ÆäÖÐiΪÐéÊýµ¥Î»£©£¬ÔòzµÄ¹²éÊýÊÇ£¨¡¡¡¡£©
A£®$\frac{1+i}{2}$B£®$\frac{1-i}{2}$C£®$\frac{-1+i}{2}$D£®$\frac{-1-i}{2}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

19£®ÒÑÖªÏòÁ¿$\overrightarrow m$=$£¨{cosx£¬cos£¨{x+\frac{¦Ð}{6}}£©}£©£¬\overrightarrow n$=$£¨{\sqrt{3}sinx$+cosx£¬2sinx}£©£¬ÇÒÂú×ãf£¨x£©=$\overrightarrow m•\overrightarrow n$£®
£¨¢ñ£©Çóº¯Êýf£¨x£©µÄ¶Ô³ÆÖá·½³Ì£»
£¨¢ò£©½«º¯Êýf£¨x£©µÄͼÏóÏòÓÒÆ½ÒÆ$\frac{¦Ð}{6}$¸öµ¥Î»µÃµ½g£¨x£©µÄͼÏ󣬵±x¡Ê[0£¬¦Ð]ʱ£¬Çóº¯Êýg£¨x£©µÄµ¥µ÷µÝÔöÇø¼ä£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®Èçͼ£¬ÍÖÔ²C£º$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1£¨a£¾b£¾0£©$µÄÀëÐÄÂÊΪ$\frac{{\sqrt{2}}}{2}$£¬F1¡¢F2ΪÆä×ó¡¢ÓÒ½¹µã£¬ÇÒ|F1F2|=2£¬¶¯Ö±Ïßl£ºy=kx+mÓëÍÖÔ²CÓÐÇÒ½öÓÐÒ»¸ö¹«¹²µã£®
£¨¢ñ£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨¢ò£©¹ýF1¡¢F2·Ö±ð×÷Ö±ÏßlµÄ´¹Ïߣ¬´¹×ã·Ö±ðΪP¡¢Q£¬ÇóËıßÐÎPF1F2QÃæ»ýµÄ×î´óÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

16£®Èôº¯Êýf£¨x£©=$\left\{\begin{array}{l}{|lnx|+2£¨x£¾0£©}\\{3-{x}^{2}£¨x¡Ü0£©}\end{array}\right.$£¬·½³Ìf[f£¨x£©]=aÖ»ÓÐËĸö²»Í¬µÄʵ¸ù£¬ÔòʵÊýaµÄȡֵ·¶Î§ÊÇ£¨¡¡¡¡£©
A£®£¨2+ln2£¬e£©B£®£¨e£¬2+ln3£©C£®£¨2+ln2£¬3£©D£®£¨3£¬2+ln3£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

3£®ÒÑÖªº¯Êýf£¨x£©=ax2+bx+c£¬Ôòf£¨-$\frac{b}{2a}$£©=$\frac{4ac-{b}^{2}}{4a}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

20£®Èçͼ£¬ÈýÀâÖù ABC-A1B1C1 ÖУ¬AA1¡ÍÆ½Ãæ A1B1C1£¬AB=AC=AA1=2£¬AB¡ÍAC£¬D Îª AC Öе㣬µã E ÔÚÀâ CC1CÉÏ£¬ÇÒ AE¡ÍÆ½Ãæ A1B1D£®
£¨¢ñ£©Çó CE µÄ³¤£»
£¨¢ò£©ÇóÈýÀâ×¶ E-A1BD µÄÌå»ý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

11£®ÉèÍÖÔ²CµÄÖÐÐÄÔÚÔ­µã£¬×ó£¬ÓÒ½¹µã·Ö±ðΪF1£¬F2£¬¹ýF1´¹Ö±xÖáµÄÖ±ÏßÓëÍÖÔ²ÏཻÓÚA£¬BÁ½µã£¬|AB|=$\frac{2\sqrt{3}}{3}$£¬ÇÒ¡÷F2ABµÄÖܳ¤Îª4$\sqrt{3}$£®
£¨1£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨2£©¹ýÔ²D£ºx2+y2=4ÉÏÈÎÒ»µãP×÷ÍÖÔ²CµÄÁ½ÌõÇÐÏßm£¬n£¬Ö±Ïßm£¬nÓëÔ²DµÄÁíÒ»½»µã·Ö±ðΪM£¬N£®
¢ÙÖ¤Ã÷£ºm¡Ín£»
¢ÚÇó¡÷MNPÃæ»ýµÄ×î´óÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸