分析 (1)先根据同角的三角函数的关系求出A,再根据余弦定理即可求出,
(2)先根据夹角求出cosC,求出CD的长,得到S△ABD=$\frac{1}{2}$S△ABC.
解答
解:(1)∵sinA+$\sqrt{3}$cosA=0,
∴tanA=$-\sqrt{3}$,
∵0<A<π,
∴A=$\frac{2π}{3}$,
由余弦定理可得a2=b2+c2-2bccosA,
即28=4+c2-2×2c×(-$\frac{1}{2}$),
即c2+2c-24=0,
解得c=-6(舍去)或c=4,
故c=4.
(2)∵c2=b2+a2-2abcosC,
∴16=28+4-2×2$\sqrt{7}$×2×cosC,
∴cosC=$\frac{2}{\sqrt{7}}$,
∴CD=$\frac{AC}{cosC}$=$\frac{2}{\frac{2}{\sqrt{7}}}$=$\sqrt{7}$
∴CD=$\frac{1}{2}$BC
∵S△ABC=$\frac{1}{2}$AB•AC•sin∠BAC=$\frac{1}{2}$×4×2×$\frac{\sqrt{3}}{2}$=2$\sqrt{3}$,
∴S△ABD=$\frac{1}{2}$S△ABC=$\sqrt{3}$
点评 本题考查了余弦定理和三角形的面积公式,以及解三角形的问题,属于中档题
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | f(x)的一个周期为-2π | B. | y=f(x)的图象关于直线x=$\frac{8π}{3}$对称 | ||
| C. | f(x+π)的一个零点为x=$\frac{π}{6}$ | D. | f(x)在($\frac{π}{2}$,π)单调递减 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 箱产量<50kg | 箱产量≥50kg | |
| 旧养殖法 | ||
| 新养殖法 |
| P(K2≥K) | 0.050 | 0.010 | 0.001 |
| K | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com