精英家教网 > 高中数学 > 题目详情
2.同时抛掷三枚均匀的硬币,则基本事件的总个数和恰有2个正面朝上的基本事件的个数分别为(  )
A.3,3B.4,3C.6,3D.8,3

分析 由题意,基本事件的总个数为23=8,恰有2个正面朝上的基本事件为正正反,正反正,反正正,即3个,可得结论.

解答 解:由题意,基本事件的总个数为23=8,
恰有2个正面朝上的基本事件为正正反,正反正,反正正,即3个.
故选D.

点评 本题考查基本事件的求解,考查学生的计算能力,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.“a=1”是“a2=1”成立的充分不必要条件.(在“充分必要”、“充分不必要”、“必要不充分”、“既不充分也不必要”中选一个合适的填空)充分不必要.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=x2+2x|x-a|,其中a∈R.
(1)当a=-1时,在所给坐标系中作出f(x)的图象;
(2)对任意x∈[1,2],函数g(x)=-x+14的图象恒在函数f(x)图象的上方,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设A,B为椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的长轴两端点,Q为椭圆上一点,使∠AQB=120°,则椭圆离心率e的取值范围为(  )
A.[$\frac{\sqrt{3}}{2}$,1)B.[$\frac{\sqrt{6}}{3}$,1)C.(0,$\frac{\sqrt{3}}{2}$]D.(0,$\frac{\sqrt{6}}{3}$]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知,焦点在x轴上的椭圆的上、下顶点分别为B2、B1,左焦点和右顶点分别为F、A1.经过点B2的直线l与以椭圆的中心为顶点、B2为焦点的抛物线交于A、B两点,且点B2恰为线段AB的三等分点,直线l1过点B1且垂直于y轴,线段AB的中点M到直线l1的距离为$\frac{9}{4}$.若$\overrightarrow{F{B}_{2}}$•$\overrightarrow{{A}_{1}{B}_{2}}$=1-2$\sqrt{3}$,则椭圆的标准方程是(  )
A.$\frac{{x}^{2}}{4}$+y2=1B.$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{2}$=1C.$\frac{{x}^{2}}{6}$+$\frac{{y}^{2}}{4}$=1D.$\frac{{x}^{2}}{3}$+y2=1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.直三棱柱ABC-A1B1C1中,∠ABC=90°,AB=BC=BB1,M为A1B1的中点,N是AC1与A1C的交点.
(Ⅰ)求证:MN∥平面BCC1B1
(Ⅱ)求证:MN⊥平面ABC1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.设f(x)是定义在(0,+∞)上的增函数,对定义域内的任意x,y都满足f(xy)=f(x)+f(y),
(1)求f(1);
(2)若f(2)=1,解不等式f(x)+f(x-3)≤2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.用秦九韶算法计算多项式f(x)=3x6+4x5+5x4+6x3+7x2+8x+1,当x=0.4时的值时,需要做乘法的次数是6次.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.5张卡片上分别写有数字1,2,3,4,5,从这5张卡片中随机抽取2张,则取出2张卡片上数字之和为偶数的概率为(  )
A.$\frac{3}{5}$B.$\frac{2}{5}$C.$\frac{3}{4}$D.$\frac{2}{3}$

查看答案和解析>>

同步练习册答案