分析 (1)令x=y=1即可计算出f(1);
(2)根据题意得出f(4)=2,所以不等式f(x)+f(x-3)≤2转化为f[x(x-3)]≤f(4),再根据函数的单调性即可求出x范围;
解答 (1)令x=y=1,则f(1×1)=f(1)+f(1)⇒f(1)=0;
(2)2=1+1=f(2)+f(2)=f(4),f(x)+f(x-3)=f[x(x-3)];
∵f(x)+f(x-3)≤2 即f[x(x-3)]≤f(4);
∵f(x)在(0,+∞)上是单调递增的;
∴$\left\{\begin{array}{l}{x(x-3)≤4}\\{x>0}\\{x-3>0}\end{array}\right.$⇒3<x≤4,
∴不等式f(x)+f(x-3)≤2的解集为{x|3<x≤4}.
点评 本题主要考查了新定义抽象函数的具体应用,以及函数的单调性知识点,属中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{16}$ | B. | $\frac{1}{8}$ | C. | $\frac{1}{4}$ | D. | $\frac{3}{16}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -2 | B. | $-\frac{1}{2}$ | C. | 2 | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | -1 | C. | 2 | D. | -2 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {0,2,4} | B. | {2,4,6} | C. | {0,8} | D. | {2,4,6,8} |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com