分析 (1)由三角函数恒等变换化简已知等式可得sinA=acosC,结合正弦定理,可得sinC=-cosC,从而可求C.
(2)由余弦定理整理可得a2+b2=1-$\sqrt{2}$ab,结合基本不等式ab≤$\frac{{a}^{2}+{b}^{2}}{2}$可得:a2+b2≤1-$\frac{\sqrt{2}}{2}$(a2+b2),得到a2+b2≤2-$\sqrt{2}$当且仅当a=b时取到等号,取得最大值时∠A,∠B的值
解答 解:(1)cosBsin(-C)=cosC•(a+sinB),得到cosCsinB+sinCcosB+acosC=0,
⇒sin(B+C)=sinA=-acosC,…(3分)
∵$\frac{sinA}{a}=\frac{sinC}{c}=sinC$=-cosC即sinC=-cosC,所以C=$\frac{3π}{4}$;…(7分)
(2)∵a2+b2-c2=2abcosC,所以a2+b2=1-$\sqrt{2}$ab①,…(9分)
∵ab≤$\frac{{a}^{2}+{b}^{2}}{2}$②,
∴②代入①可得:a2+b2≥1-$\frac{\sqrt{2}}{2}$(a2+b2),
所以a2+b2≥2-$\sqrt{2}$…(12分)
当且仅当a=b时取到等号,所以取到最小值2-$\sqrt{2}$时A=B=$\frac{π}{8}$.
点评 本题主要考查了正弦定理,余弦定理,基本不等式的应用,综合性较强.
科目:高中数学 来源: 题型:选择题
| A. | a>b>c | B. | b>a>c | C. | c>b>a | D. | a>c>b |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 半径为4的圆的面积 | B. | 半径为4的半圆的面积 | ||
| C. | 半径为4的圆面积的$\frac{1}{4}$ | D. | 半径为16的圆面积的$\frac{1}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 这个算法可以求方程所有的零点 | |
| B. | 这个算法可以求任何方程的零点 | |
| C. | 这个算法能求方程所有的近似零点 | |
| D. | 这个算法并不一定能求方程所有的近似零点 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com