【题目】已知椭圆
(a>b>0)长轴的两顶点为A、B,左右焦点分别为F1、F2,焦距为2c且a=2c,过F1且垂直于x轴的直线被椭圆C截得的线段长为3.
(1)求椭圆C的方程;
(2)在双曲线
上取点Q(异于顶点),直线OQ与椭圆C交于点P,若直线AP、BP、AQ、BQ的斜率分别为k1、k2、k3、k4,试证明:k1+k2+k3+k4为定值;
(3)在椭圆C外的抛物线K:y2=4x上取一点E,若EF1、EF2的斜率分别为
,求
的取值范围.
【答案】(1)
(2)0(3)![]()
【解析】
(1)由椭圆的通径公式及a=2c,即可求得a和b的值,即可求得椭圆方程方程;
(2)根据直线的斜率公式,求得
,
,由
共线,得![]()
,即可求得结论;
(3)先用E点坐标表示
,再根据函数单调性即可求得
的取值范围.
(1)由题意a=2c,椭圆的通径为
=3,
因为a2=b2+c2,所以a=2,b=
,c=1,
∴椭圆的标准方程:
;
(2)由(1)可知:A(﹣2,0),B(2,0),F1(﹣1,0),F2(1,0),设P(x1,y1),
则
,则![]()
=![]()
![]()
![]()
设Q(x2,y2),则
,则
则
=
=
,
又
共线,∴
,![]()
(3)设
,由
,解得:
,
由E在椭圆C外的抛物线K:y2=4x上一点,则
,
则EF1 、EF2的斜率分别为
,(
)![]()
则
,(
)
在(
,4),(4,+∞)上分别单调递增,
∴
的取值范围
.
科目:高中数学 来源: 题型:
【题目】为了检测某种零件的一条生产线的生产过程,从生产线上随机抽取一批零件,根据其尺寸的数据分成
,
,
,
,
,
,
组,得到如图所示的频率分布直方图.若尺寸落在区间
之外,则认为该零件属“不合格”的零件,其中
,
分别为样本平均和样本标准差,计算可得
(同一组中的数据用该组区间的中点值作代表).
![]()
(1)若一个零件的尺寸是
,试判断该零件是否属于“不合格”的零件;
(2)工厂利用分层抽样的方法从样本的前
组中抽出
个零件,标上记号,并从这
个零件中再抽取
个,求再次抽取的
个零件中恰有
个尺寸小于
的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
(
),点
为椭圆短轴的上端点,
为椭圆上异于
点的任一点,若
点到
点距离的最大值仅在
点为短轴的另一端点时取到,则称此椭圆为“圆椭圆”,已知
.
(1)若
,判断椭圆
是否为“圆椭圆”;
(2)若椭圆
是“圆椭圆”,求
的取值范围;
(3)若椭圆
是“圆椭圆”,且
取最大值,
为
关于原点
的对称点,
也异于
点,直线
、
分别与
轴交于
、
两点,试问以线段
为直径的圆是否过定点?证明你的结论.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知曲线
的参数方程为
(
为参数),以坐标原点
为极点,
轴的正半轴为极轴建立极坐标系,曲线
的极坐标方程为
.
(1)写出曲线
的极坐标方程,并求出曲线
与
公共弦所在直线的极坐标方程;
(2)若射线
与曲线
交于
两点,与曲线
交于
点,且
,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设三棱锥
的每个顶点都在球
的球面上,
是面积为
的等边三角形,
,
,且平面
平面
.
![]()
(1)求球
的表面积;
(2)证明:平面
平面
,且平面
平面
.
(3)与侧面
平行的平面
与棱
,
,
分别交于
,
,
,求四面体
的体积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在如图所示的几何体中,四边形ABCD为正方形,
平面ABCD,
,
,
.
![]()
(1)求证:
平面PAD;
(2)在棱AB上是否存在一点F,使得平面
平面PCE?如果存在,求
的值;如果不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知等差数列
的首项为
,公差为
,等比数列
的首项为
,公比为
,其中
,且
.
(1)求证:
,并由
推导
的值;
(2)若数列
共有
项,前
项的和为
,其后的
项的和为
,再其后的
项的和为
,求
的比值.
(3)若数列
的前
项,前
项、前
项的和分别为
,试用含字母
的式子来表示
(即
,且不含字母
)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com