| ωx+φ | 0 | $\frac{π}{2}$ | π | $\frac{3π}{2}$ | 2π |
| x | $\frac{π}{12}$ | $\frac{π}{3}$ | $\frac{7π}{12}$ | $\frac{5π}{6}$ | |
| f(x)=Asin(ωx+φ) | 0 | 5 | 0 | -5 | 0 |
分析 (1)根据用五点法作函数y=Asin(ωx+φ)在一个周期上的简图的方法,求得A、ω、φ的值,可得函数的解析式,并得到完整的表格.
(2)利用函数y=Asin(ωx+φ)的图象变换规律,求得g(x)的解析式,再利用正弦函数的图象的对称性,求得y=g(x)的图象离原点O最近的对称中心.
(3)利用正弦函数的定义域和值域,求得当$x∈[-\frac{π}{4},\frac{π}{4}]$时,函数y=g(x)的值域.
解答 解:(1)根据所给的表格可得A=5,$\frac{T}{2}$=$\frac{1}{2}$•$\frac{2π}{ω}$=$\frac{5π}{6}$-$\frac{π}{3}$,∴ω=2,结合五点法作图可得2•$\frac{π}{3}$+φ=$\frac{π}{2}$,∴φ=-$\frac{π}{6}$,
∴f(x)=5sin(2x-$\frac{π}{6}$).
根据五点法作图可得表格具体为:
| ωx+φ | 0 | $\frac{π}{2}$ | π | $\frac{3π}{2}$ | 2π |
| x | $\frac{π}{12}$ | $\frac{π}{3}$ | $\frac{7π}{12}$ | $\frac{5π}{6}$ | $\frac{13π}{12}$ |
| f(x) | 0 | 5 | 0 | -5 | 0 |
点评 本题主要考查用五点法作函数y=Asin(ωx+φ)在一个周期上的简图,函数y=Asin(ωx+φ)的图象变换规律,正弦函数的定义域和值域,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | △PF1F2的内切圆圆心在直线$x=\frac{a}{2}$上 | B. | △PF1F2的内切圆圆心在直线x=b上 | ||
| C. | △PF1F2的内切圆圆心在直线OP上 | D. | △PF1F2的内切圆经过点(a,0) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| x | 0 | 1 | 3 | 4 |
| y | 2.4 | 4.5 | 4.6 | 6.5 |
| A. | 2.4 | B. | 2.84 | C. | 3.67 | D. | 3.95 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 充分不必要条件 | B. | 必要不充分条件 | ||
| C. | 充要条件 | D. | 既不充分也不必要条件 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $-\frac{{\sqrt{2}}}{10}$ | B. | $-\frac{{7\sqrt{2}}}{10}$ | C. | $-\frac{{3\sqrt{2}}}{4}$ | D. | $-\frac{{4\sqrt{2}}}{5}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com