精英家教网 > 高中数学 > 题目详情
在锐角三角形ABC中,sinA=
3
5
,tan(A-B)=-
1
3
,则tanC的值为
 
考点:两角和与差的正切函数
专题:三角函数的求值
分析:由题意可得tanA,进而可得tanB,而tanC=-tan(A+B),由两角和与差的正切函数公式可得.
解答: 解:∵在锐角三角形ABC中,sinA=
3
5

∴cosA=
1-sin2A
=
4
5

∴tanA=
sinA
cosA
=
3
4

∴tanB=tan[A-(A-B)]
=
tanA-tan(A-B)
1+tanAtan(A-B)
=
3
4
+
1
3
1-
3
4
×
1
3
=
13
9

∴tanC=-tan(A+B)=-
tanA+tanB
1-tanAtanB

=-
3
4
+
13
9
1-
3
4
×
13
9
=
79
3

故答案为:
79
3
点评:本题考查两角和与差的正切函数公式,属中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

对于函数y=f(x)与常数a,b,若f(2x)=af(x)+b恒成立,则称(a,b)为函数f(x)的一个“P数对”;设函数f(x)的定义域为R+,且f(1)=3.
(Ⅰ)若(a,b)是f(x)的一个“P数对”,且f(2)=6,f(4)=9,求常数a,b的值;
(Ⅱ)若(1,1)是f(x)的一个“P数对”,求f(2n)(n∈N*);
(Ⅲ)若(-2,0)是f(x)的一个“P数对”,且当x∈[1,2)时f(x)=k-|2x-3|,求k的值及f(x)在区间[1,2n)(n∈N*)上的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

某校随机抽取某次高三数学模拟考试甲、乙两班各10名同学的客观题成绩(满分60分),统计后获得成绩数据的茎叶图(以十位数字为茎,个位数字为叶),如图所示:
(Ⅰ)分别计算两组数据的平均数,并比较哪个班级的客观题平均成绩更好;
(Ⅱ)从这两组数据中分别抽取一个数据,求其中至少有一个是满分(60分)的概率;
(Ⅲ)规定:客观题成绩不低于55分为“优秀客观卷”,从甲班的十个数据中任意抽取两个,求两个都是“优秀客观卷”的概率.
甲 班 乙 班
 35
 5 0 045 5 0
 5 5 5 5 050 0 5 5 5
0 060

查看答案和解析>>

科目:高中数学 来源: 题型:

已知关于t的一元二次方程t2+(2+i)t+2xy+(x-y)i=0(x,y∈R).当方程有实根时,则点(x,y)的轨迹方程为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

执行如图所示的程序框图,则输出的结果是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

对于集合A={a1,a2,a3,a4,a5},定义集合S={x|x=ai+aj,1≤i<j≤5},记集合S中的元素个数为S(A).若a1,a2,a3,a4,a5是公差大于零的等差数列,则S(A)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在(x-a)10的展开式中,x3的系数是-15,则实数a=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

过直线l:y=2x上一点P作圆C:(x-6)2+(y-2)2=5的切线l1,l2,A,B为切点,若l1,l2关于直线l对称,则∠APB=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

用红、黄两种颜色随机地给正三棱锥的四个顶点染色,则“至少有一个面上的三个顶点同色”的概率等于
 

查看答案和解析>>

同步练习册答案