精英家教网 > 高中数学 > 题目详情
10.半径为r的圆的面积S(r)=πr2,周长C(r)=2πr,则S'(r)=C(r)①,对于半径为R的球,其体积$V(r)=\frac{{4π{r^3}}}{3}$,表面积S(r)=4πr2,请你写出类似于①的式子:V'(r)=S(r).

分析 圆的面积函数的导数等于圆的周长函数,类比得到球的体积函数的导数等于球的表面积函数,由二维空间推广到三维空间.

解答 解:体积$V(r)=\frac{{4π{r^3}}}{3}$,表面积S(r)=4πr2
类似于①的式子可得V'(r)=S(r),
故答案为V'(r)=S(r).

点评 本题考查类比推理,解答本题的关键是:(1)找出两类事物:圆与球之间的相似性或一致性;(2)用圆的性质去推测球的性质,得出一个明确的命题(猜想).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.已知数列{an}满足:${a_n}>0,{a_{n+1}}+\frac{1}{a_n}<2({n∈{N^*}})$.
(1)求证:${a_{n+2}}<{a_{n+1}}<2({n∈{N^*}})$;
(2)求证:${a_n}>1({n∈{N^*}})$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.设向量$\overrightarrow{a}$=(1,$\sqrt{3}$),$\overrightarrow{b}$=(m,$\sqrt{3}$),且$\overrightarrow{a}$,$\overrightarrow{b}$的夹角为$\frac{π}{3}$,则实数m=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.不等式|x|•(1-2x)>0的解集是(  )
A.$(-∞,\frac{1}{2})$B.(-∞,0)∪$(0,\frac{1}{2})$C.$(\frac{1}{2},+∞)$D.$(0,\frac{1}{2})$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设集合A={x|x≤$\sqrt{13}$},a=$\sqrt{11}$,那么(  )
A.a?AB.a∉AC.{a}∉AD.a∈A

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知O是△ABC所在平面内一点,向量$\overrightarrow{O{P_1}}、\overrightarrow{O{P_2}}、\overrightarrow{O{P_3}}$满足条件$\overrightarrow{O{P_1}}+\overrightarrow{O{P_2}}+\overrightarrow{O{P_3}}$=$\overrightarrow 0$,且$|{\overrightarrow{O{P_1}}}|=|{\overrightarrow{O{P_2}}}|=|{\overrightarrow{O{P_3}}}$|=1,则△P1P2P3是(  )
A.等腰三角形B.直角三角形C.等腰直角三角形D.等边三角形

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设全集U=R,集合A={x∈N|x2<6x},B={x∈N|3<x<8},则如图阴影部分表示的集合是(  )
A.{1,2,3,4,5}B.{1,2,3}C.{3,4}D.{4,5,6,7}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知动点M(x,y)满足:$\sqrt{(x+1)^{2}+{y}^{2}}$+$\sqrt{(x-1)^{2}+{y}^{2}}$=2$\sqrt{2}$,M的轨迹为曲线E.
(Ⅰ)求E的方程;
(Ⅱ)过点F(1,0)作直线l交曲线E于P,Q两点,交y轴于R点,若$\overrightarrow{RP}$=λ1$\overrightarrow{PF}$,$\overrightarrow{RQ}$=λ2$\overrightarrow{QF}$,求证:λ12为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.函数y=2sin2(2x)-1的最小正周期是$\frac{π}{2}$.

查看答案和解析>>

同步练习册答案