精英家教网 > 高中数学 > 题目详情
15.在平面直角坐标系中,不等式组$\left\{\begin{array}{l}{x+y≥0}\\{x-y+4≥0}\\{x≤a}\end{array}\right.$(a为常数)表示的平面区域的面积是16,那么实数a的值为2.

分析 由约束条件作出可行域,由三角形的面积等于16列式求得a的值.

解答 解:由约束条件作出可行域如图,

图中阴影部分为等腰直角三角形,∴$S=\frac{1}{2}(a+2)•2(a+2)=16$,解得:a=2.
故答案为:2.

点评 本题考查了简单的线性规划,考查了数形结合的解题思想方法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=$\frac{1}{2}$ln(2x+1)-mx(m∈R).
(1)求函数f(x)=$\frac{1}{2}$ln(2x+1)-mx(m∈R)的单调区间;
(2)若函数2f(x)≤m+1恒成立,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.设f-1(x)为f(x)=$\frac{x}{2x+1}$的反函数,则f-1(2)=-$\frac{2}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.若曲线C在顶点为O的角α的内部,A、B分别是曲线C上相异的任意两点,且α≥∠AOB,我们把满足条件的最小角α叫做曲线C相对点O的“确界角”.已知O为坐标原点,曲线C的方程为y=$\left\{\begin{array}{l}{\sqrt{1+{x}^{2}},x≥0}\\{2-\sqrt{1-{x}^{2}},x<0}\end{array}\right.$,那么它相对点O的“确界角”等于(  )
A.$\frac{π}{3}$B.$\frac{5π}{12}$C.$\frac{7π}{12}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.定义运算“•”如下:x•y=$\left\{\begin{array}{l}{x,x≥y}\\{y,x<y}\end{array}\right.$,若函数f(x)=m-(1-2x)•(2x-2)有两个零点,则(  )
A.m∈(-$\frac{1}{2}$,+∞)B.m∈(-$\frac{1}{2}$,1)C.m∈[-$\frac{1}{2}$,+∞)D.m∈[-$\frac{1}{2}$,1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.下列四个命题中是假命题的是(  )
A.在△ABC中,角A,B所对边分别为a,b则sinA>sinB成立的充要条件是a>b
B.若命题p:?x∈(0,+∞),sinx-x<0,命题q:?x0∈(0,+∞),e${\;}^{{x}_{0}}$<0,则p∧¬q为真命题
C.若$\overrightarrow{a}$∥$\overrightarrow{b}$,则存在唯一的实数λ,使$\overrightarrow{a}$=λ$\overrightarrow{b}$
D.在一个2×2列联表中,由计算得k2=6.721,则有99%的把握确认这两个变量间有关系;可以参考独立性检验临界表
P(K2≥k)0.0100.0050.001
k6.5357.87910.828

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.某中学为了解高三学生数学课程的学习情况,从全部2000名学生的数学考试成绩中随机抽取部分学生的考试成绩进行统计分析,得到如下的样本的频率分布直方图,已知成绩在[80,90)的学生共有40人,则样本中成绩在[60,80)内的人数为(  )
A.102B.104C.112D.114

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.如图,平行六面体ABCD-A1B1C1D1中,以顶点A为端点的三条棱长都相等,且它们彼此的夹角都是60°;记AC1=λAB,则λ的值为(  )
A.$\sqrt{6}$B.$\sqrt{5}$C.2D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.长时间用手机上网严重影响着学生的身体健康,某校为了解A,B两班学生手机上网的时长,分别从这两个班中随机抽取5名同学进行调查,将他们平均每周手机上网的时长作为样本,绘制成茎叶图如图所示(图中的茎表示十位数字,叶表示个位数字).
(Ⅰ)分别求出图中所给两组样本数据的平均值,并据此估计,哪个班的学生平均上网时间较长;
(Ⅱ)从A班的样本数据中随机抽取一个不超过21的数据记为a,从B班的样本数据中随机抽取一个不超过21的数据记为b,求a>b的概率.

查看答案和解析>>

同步练习册答案