精英家教网 > 高中数学 > 题目详情
7.已知一个几何体的三视图如图所示,则该几何体的体积是(  )
A.2B.4C.6D.1

分析 由三视图可知:该几何体为四棱锥P-ABCD,PA⊥底面ABCD,底面ABCD是直角梯形,AB∥DC,AB⊥AD.AB=2,CD=4,AD=2,PA=2.即可得出.

解答 解:由三视图可知:该几何体为四棱锥P-ABCD,PA⊥底面ABCD,底面ABCD是直角梯形,
AB∥DC,AB⊥AD.AB=2,CD=4,AD=2,PA=2.
∴该几何体的体积V=$\frac{1}{3}×\frac{2+4}{2}×2×2$=4.
故选:B.

点评 本题考查了四棱锥的三视图、体积计算公式,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.如图所示的三棱柱中,侧面ABB1A1为边长等于2的菱形,且∠AA1B1=60°,△ABC为等边三角形,面ABC⊥面ABB1A1
(1)求证:A1B1⊥AC1
(2)求侧面A1ACC1和侧面BCC1B1所成的二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.四个人围坐在一张圆桌旁,每个人面前放着完全相同的硬币,所有人同时翻转自己的硬币.若硬币正面朝上,则这个人站起来; 若硬币正面朝下,则这个人继续坐着.那么,没有相邻的两个人站起来的概率为(  )
A.$\frac{1}{4}$B.$\frac{7}{16}$C.$\frac{1}{2}$D.$\frac{9}{16}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知函数$f(x)=\left\{{\begin{array}{l}{{x^2}+(4a-3)x+3a,x<0}\\{{{log}_a}(x+1)+1,x≥0}\end{array}}\right.(a>0且a≠1)$在R上单调递减,且关于x的方程$|f(x)|=2-\frac{x}{3}$恰有两个不相等的实数解,则a的取值范围是(  )
A.(0,$\frac{2}{3}$]B.[$\frac{2}{3}$,$\frac{3}{4}$]C.[$\frac{1}{3}$,$\frac{2}{3}$]D.[$\frac{1}{3}$,$\frac{2}{3}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.如果z是3+4i的共轭复数,则z对应的向量$\overrightarrow{OA}$的模是(  )
A.1B.$\sqrt{7}$C.$\sqrt{13}$D.5

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知半径为$2\sqrt{3}$的球内有一内接正方体,若在球内任取一点,则该点在正方体内的概率为$\frac{2\sqrt{3}}{3π}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知A点坐标为$(-2\sqrt{3},0)$,B点坐标为$(2\sqrt{3},0)$,且动点M到A点的距离是8,线段MB的垂直平分线l交线段MA于点P.
(Ⅰ)求动点P的轨迹C方程.
(Ⅱ) 已知A(2,-1),过原点且斜率为k(k>0)的直线l与曲线C交于P,Q两点,求△APQ面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.下列函数中,①y=sinx+tanx-x;②y=sin2x+cosx;③y=sin|x|;④$y=3sin2({x+\frac{π}{4}})$,属于偶函数的有(  )
A.0个B.1个C.2个D.3个

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知实数x,y满足x2+y2-4x-6y+12=0,则x-y的最大值为1+$\sqrt{2}$.

查看答案和解析>>

同步练习册答案