精英家教网 > 高中数学 > 题目详情
14.已知圆的方程为x2+(y-1)2=4,若过点$P({1,\frac{1}{2}})$的直线l与此圆交于A,B两点,圆心为C,则当∠ACB最小时,直线l的方程为(  )
A.4x-2y-3═0B.x+2y-2═0C.4x+2y-3═0D.x-2y+2=0

分析 利用当∠ACB最小时,CP和AB垂直,求出AB直线的斜率,用点斜式求得直线l的方程.

解答 解:圆C:x2+(y-1)2=4的圆心为C(0,1),
当∠ACB最小时,CP和AB垂直,
∴AB直线的斜率等于$\frac{-1}{\frac{1-\frac{1}{2}}{0-1}}$=2,
用点斜式写出直线l的方程为y-$\frac{1}{2}$=2(x-1),
∴当∠ACB最小时,直线l的方程为4x-2y-3=0,
故选:A.

点评 本题考查用点斜式求直线方程的方法,两直线垂直,斜率之积等于-1.判断当∠ACB最小时,CP和AB垂直是解题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.曲线C上任一点P与两点F1(-2,0),F2(2,0)连线的斜率乘积为-$\frac{1}{2}$.
(1)求曲线C的方程;
(2)过点M(1,1)的直线与曲线C交于A,B,且点M恰好为线段AB的中点,求直线AB的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.若抛物线x2=-2py(p>0)的焦点到准线的距离为1,则抛物线方程为x2=-2y.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.倾斜角为$\frac{π}{3}$的直线经过抛物线x2=2py的焦点,交抛物线于A,B两点,若三角形OAB的面积为4,其中O为坐标原点,则p=±2$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知抛物线C:y2=4x的交点为F,直线y=x-1与C相交于A,B两点,与双曲线E:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=2(a>0,b>0)的渐近线相交于M,N两点,若线段AB与MN的中点相同,则双曲线E的离心率为$\frac{\sqrt{15}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,正四棱锥P-ABCD中,底面ABCD的边长为4,PD=4,E为PA的中点,
(Ⅰ)求证:平面EBD⊥平面PAC;
(Ⅱ)求直线BE与平面PBD所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知某池塘养殖着鲤鱼和鲫鱼,为了估计这两种鱼的数量,养殖者从池塘中捕出这两种鱼各1 000条,给每条鱼做上不影响其存活的标记,然后放回池塘,待完全混合后,再每次从池塘中随机地捕出1 000条鱼,记录下其中有记号的鱼的数目,立即放回池塘中.这样的记录做了10次,并将记录获取的数据制作成如图的茎叶图.

(1)根据茎叶图计算有记号的鲤鱼和鲫鱼数目的平均数,并估计池塘中的鲤鱼和鲫鱼的数量;
(2)为了估计池塘中鱼的总重量,现按照(1)中的比例对100条鱼进行称重,根据称重鱼的重量介于[0,4.5](单位:千克)之间,将测量结果按如下方式分成九组:第一组[0,0.5),第二组[0.5,1),…,第九组[4,4.5].如图是按上述分组方法得到的频率分布直方图的一部分.
①估汁池塘中鱼的重量在3千克以上(含3千克)的条数;
②若第三组鱼的条数比第二组多7条、第四组鱼的条数也比第三组多7条,请将频率分布直方图补充完整;
③在②的条件下估计池塘中鱼的重量的众数及池塘中鱼的总重量.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.从装有两个白球、两个黑球的袋中任意取出两个球,取出一个白球一个黑球的概率为$\frac{2}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知圆E:x2-λx+y2-9=0上任意一点关于直线y=x-1的对称点仍在圆上.
(1)求λ的值和圆E的标准方程;
(2)若圆E与y轴正半轴的交点为A,直线与圆E交于B,C两点,且点H(3,0)是△ABC的垂心(垂心是三角形三条高线的交点),求直线的方程.

查看答案和解析>>

同步练习册答案