精英家教网 > 高中数学 > 题目详情
过点M(1,
a
)向抛物线C:y2=ax的准线作垂线,垂足为D,若|MD|=|MO|(其中O是坐标原点),则a=(  )
A、8B、4C、6D、-8或8
考点:抛物线的简单性质
专题:圆锥曲线的定义、性质与方程
分析:求出抛物线的准线方程,利用距离公式列出方程,即可求出a的值.
解答: 解:抛物线C:y2=ax的准线为x=-
a
4

过点M(1,
a
)向抛物线C:y2=ax的准线作垂线,垂足为D,若|MD|=|MO|,
可得:1+
a
4
=
1+(
a
)
2

即16+16a=(4+a)2
解得a=8.a=0(舍去).
故选:A.
点评:本题考查抛物线的性质,两点间距离公式的应用,考查计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若函数f(x)=
|x+2|+|x-m|-9
的定义域为R,则实数m的取值范围为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={3,4},集合B={1,2,3,4},则∁BA=(  )
A、∅
B、{3,4}
C、{1,2}
D、{1,2,3,4,5}

查看答案和解析>>

科目:高中数学 来源: 题型:

设x、y∈R+,且x+2y=8,则
9
x
+
2
y
的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足:对任意n∈N*均有an+1=pan+3p-3(p为常数,p≠0且p≠1),若a2,a3,a4,a5∈{-19,-7,-3,5,10,29},写出一个满足条件的a1的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}为等差数列,满足an+an+1=4n+2(n∈N*),其前n项和为Sn,数列{bn}为等比数列,且a1b1+a2b2+a3b3+…+anbn=(n-1)•2n+2+4对任意n∈N*的恒成立;
(1)求数列{an}、{bn}的通项公式;
(2)是否存在p,q∈N*,使得(a2p+22-bq=392成立,若存在,求出所有满足条件的p,q,若不存在,说明理由;
(3)记集合M={n|
Sn
bn
≥λ,n∈N*},若M中共有5个元素,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知五面体ABCDE,其中△ABC内接于圆O,AB是圆O的直径,四边形DCBE为平行四边形,且DC⊥平面ABC.
(Ⅰ)证明:AD⊥BC
(Ⅱ)若AB=4,BC=2,且二面角A-BD-C所成角θ的正切值是2,试求该几何体ABCDE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知F1,F2分别是椭圆C1
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦点,F2是抛物线C2:y2=2px(p>0)的焦点,P(
2
3
,m)是C1与C2在第一象限的交点,且|PF2|=
5
3

(Ⅰ)求C1与C2的方程;
(Ⅱ)过F2的直线交椭圆于M,N两点,T为直线x=4上任意一点,且T不在x轴上.
(i)求
F2M
F2N
的取值范围;
(ii)若OT恰好一部分线段MN,证明:TF2⊥MN.

查看答案和解析>>

科目:高中数学 来源: 题型:

对任意非负实数x,不等式(
x+1
-
x
)•
x
≤a恒成立,则实数a的最小值为
 

查看答案和解析>>

同步练习册答案