精英家教网 > 高中数学 > 题目详情
已知数列{an}满足:对任意n∈N*均有an+1=pan+3p-3(p为常数,p≠0且p≠1),若a2,a3,a4,a5∈{-19,-7,-3,5,10,29},写出一个满足条件的a1的值为
 
考点:数列递推式
专题:等差数列与等比数列
分析:取a2=-7,a3=5,得5=-7p+3p-3,解得p=-2,由此求出a4=-19,a5=29,从而-7=-2a1-3×2-3,由此能求出a1=-1.
解答: 解:取a2=-7,a3=5,
得5=-7p+3p-3,解得p=-2,
∴a4=-2×5-3×2-3=-19,
a5=-19×(-2)-3×2-3=29,
∴-7=-2a1-3×2-3,解得a1=-1.
故答案为:-1.
点评:本题考查数列的递推公式的合理运用,是基础题,解题时要认真审题,注意递推思想的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(x)是定义在R上的奇函数,且f(x+4)=f(x),当x∈(-2,0)时,f(x)=2x,则f(2014)+f(2015)+f(2016)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

求函数y=log
1
2
sin(2x-
π
3
)的增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|x2-3x+2=0},B={-2,-1,1,2},则A∩B=(  )
A、{-2,-1}
B、{-1,2}
C、{1,2}
D、{-2,-1,1,2}

查看答案和解析>>

科目:高中数学 来源: 题型:

已知x0是函数f(x)=
sinx
x
在(0,+∞)上的一个极值点,则下面正确的结论是(  )
A、tan(x0+
π
4
)=
1+x0
1-x0
B、tan(x0+
π
4
)=
x0+1
x0-1
C、tan(x0+
π
4
)=
1-x0
1+x0
D、tan(x0+
π
4
)=
x0-1
x0+1

查看答案和解析>>

科目:高中数学 来源: 题型:

过点M(1,
a
)向抛物线C:y2=ax的准线作垂线,垂足为D,若|MD|=|MO|(其中O是坐标原点),则a=(  )
A、8B、4C、6D、-8或8

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)为奇函数,当x∈[0,1]时,f(x)=1-2|x-
1
2
|,当x∈(-∞,-1],f(x)=1-e-1-x,若关于x的不等式(x+m)>f(x)有解,则实数m的取值范围为(  )
A、(-1,0)∪(0,+∞)
B、(-2,0)∪(0,+∞)
C、{-
1
2
,-ln2,-1}∪(0,+∞)
D、{-
1
2
,-ln2,0}∪(0,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知四边形ABCD为正方形,EA⊥平面ABCD,CF∥EA,且EA=
2
AB=2CF=2
(1)求证:EC⊥平面BDF;
(2)求二面角E-BD-F的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,若∠A=120°,AB=1,BC=
13
BD
=
1
2
DC
,则AC=
 
;AD=
 

查看答案和解析>>

同步练习册答案