| A. | (0,$\frac{1}{3}$] | B. | (0,$\frac{1}{2}$] | C. | [-$\frac{1}{3}$,$\frac{1}{3}$] | D. | [-$\frac{1}{2}$,$\frac{1}{2}$] |
分析 若g(x)=f(x)-t(x+2)有两个不同的零点,则函数f(x)的图象与y=t(x+2)的图象有两个交点,画出函数的图象,数形结合可得答案.
解答 解:由题意得:
当x=0时,f(0)+2=$\frac{2}{f(1)}$=2,所以f(0)=0,
当x∈(-1,0],即$\sqrt{x+1}$∈(0,1]时,
f($\sqrt{x+1}$)=($\sqrt{x+1}$)2=x+1,
所以f(x)+2=$\frac{2}{f(\sqrt{x+1})}$=$\frac{2}{x+1}$,
所以f(x)=$\frac{2}{x+1}$-2,
故函数f(x)的图象如下图所示:![]()
若g(x)=f(x)-t(x+2)有两个不同的零点,
则函数f(x)的图象与y=t(x+2)的图象有两个交点,
故t∈(0,$\frac{1}{3}$],
故选:A
点评 本题考查的知识点是分段函数的应用,函数的图象,函数零点与方程根的关系,数形结合思想,难度中档.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-1,1) | B. | (1,$\frac{π}{2}$) | C. | (0,$\frac{π}{2}$) | D. | (-1,$\frac{π}{2}$) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com