精英家教网 > 高中数学 > 题目详情
过椭圆
x2
13
+
y2
12
=1的右焦点与y轴垂直的直线与椭圆相交于A、B两点,求|AB|的值.
考点:椭圆的简单性质
专题:圆锥曲线的定义、性质与方程
分析:根据a,b,c的关系,求出右焦点的坐标(1,0),把x=1代入椭圆的方程,从而求出|AB|的值.
解答: 解:∵a2=13,b2=12,∴c=1,
12
13
+
y2
12
=1,解得:y=±
12
13
13

∴|AB|=
24
13
13
点评:本题考查了椭圆的性质,是一道基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

函数y=f(x)是函数y=ax(a>0)且a≠1的反函数,且y=f(x)图象经过点(9,2),则f(x)=(  )
A、log2x
B、log3x
C、2x
D、3x

查看答案和解析>>

科目:高中数学 来源: 题型:

在直三棱柱ABC-A1B1C1中,如图所示,E、F分别为A1C1、B1C1的中点,D为棱CC1的中点,G是棱AA1上一点,且满足A1G=mAA1,若平面ABD∥平面GEF,试求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

某高中学生会就“2014央视春晚整体满意度”在该校师生中随机抽取了300人进行问卷调查,调查结果如下表所示:
所持态度很好看一般不好看
人数10015050
(1)若从上述300人中按照分层抽样的方法抽取6人进行座谈,再从这6人中随机抽取3人颁发幸运礼品,求这3人中持“很好看”和“一般”态度的人数之和恰好为2的概率;
(2)现从(1)所抽取6人的问卷中每次抽取1份,且进行不放回抽取,直至确定所有持“很好看”态度的问卷为止,记索要抽取的次数为X,求随机变量X的分布列及数学期望EX.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
ax+b
x+c
,x∈[0,+∞)的值域为(-2,3),则数组(a,b,c)的一组可能值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若关于x的方程x2+ax+b=0有两个根,一个根在区间(0,1)内,另一根在区间(1,3)内,记点(a,b)对应的区域为S.
(1)设z=2a-b,求z的取值范围;
(2)若点(a,b)∈S,求y=
4a2-4ab+b2+4028a-2014b+49
2a-b
的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知光线通过点A(-2,3),经x轴反射,其反射光线通过点B(5,7),则入射光线所在直线方程为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若定义[x]表示超过x的最小整数,且f(x)=[x]-x,g(x)=logax(a>1),h(x)=f(x)-g(x).若函数h(x)的图象与x轴有1个交点,则实数a的取值范围为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=ax-x2,其中a>0,集合I={x|f(x)-a2x2>0}
(1)求y=f(x)在x∈[1,2]上的最大值;
(2)给定常数k∈(0,1),当1-k≤a≤1+k时,求I长度的最小值(注:区间(α,β)的长度定义为β-α).

查看答案和解析>>

同步练习册答案