精英家教网 > 高中数学 > 题目详情
一个几何体的三视图如图所示,则该几何体的表面积是(  )
A、18+2
5
B、24+2
5
C、24+4
5
D、36+4
5
考点:由三视图求面积、体积
专题:空间位置关系与距离
分析:根据三视图判断几何体是直四棱柱,且四棱柱的底面为等腰梯形,棱柱的高为2,底面梯形的上底边长为2,下底边长为4,高为2,利用勾股定理求出腰为
12+22
=
5
,代入棱柱的表面积公式计算.
解答: 解:由三视图知几何体是直四棱柱,且四棱柱的底面为等腰梯形,棱柱的高为2,
底面梯形的上底边长为2,下底边长为4,高为2,腰为
12+22
=
5

∴几何体的表面积S=(2+4+2
5
)×2+2×
2+4
2
×2=24+4
5

故选:C.
点评:本题考查了由三视图求几何体的表面积,判断三视图的数据所对应的几何量是解答本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

复数z满足
.
zi
1i
.
=1+i,则|z+1-3i|=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若a,b∈R,则以下命题为真的是(  )
A、若a>b,则
1
a
1
b
B、若a>|b|,则
1
a
1
b
C、若a>b,则a2>b2
D、若a>|b|,则a2>b2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数F(x)=ex满足F(x)=g(x)+h(x),且g(x),h(x)分别是R上的偶函数和奇函数,若?x∈[1,2]使得不等式g(2x)-ah(x)≥0恒成立,则实数a的取值范围是(  )
A、(-∞,2
2
)
B、(-∞,2
2
]
C、(0,2
2
]
D、(2
2
,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知全集U=R,集合A={x|x-1|<1},B={x| 
1-x
x
≤0}
,则A∩(∁UB)=(  )
A、(0,1)
B、[0,1)
C、(1,2)
D、(0,2)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A,B,C,A={直线},B={平面},C=A∪B,若a∈A,b∈B,c∈C,给出下列命题:
a∥b
c∥b
⇒a∥c

a⊥b
c⊥b
⇒a∥c

a⊥b
c∥b
⇒a⊥c

其中正确的命题的个数是(  )
A、0B、1C、2D、3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆
x2
a2
+
y2
b2
=1
(a>b>0)的两个顶点为A(a,0)、B(0,b),右焦点为F,且F到直线AB的距离等于F到原点的距离,求椭圆离心率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=-x2+8x,g(x)=x-ln(x+1)
(Ⅰ)求f(x)在区间[t,t+1]上的最大值h(t);
(Ⅱ)是否存在实数k,对任意的x∈[0,+∞),不等式g(x)≤8kx-kf(x)恒成立?若存在,求出k的取值范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

数列{an}{bn}中,a 1=1,b1=2,且an+1+(-1)nan=bn,n∈N*,设数列{an}{bn}的前n项和分别为An和Bn
(1)若数列{an}是等差数列,求An和Bn
(2)若数列{bn}是公比q(q≠1)为等比数列:
    ①求A2013
    ②是否存在实数m,使A4n=m•a4n对任意自然数n∈N*都成立,若存在,求m的值,若不存在,请说明理由.

查看答案和解析>>

同步练习册答案