| A. | $\frac{1}{2}$ | B. | 2 | C. | $-\frac{1}{2}$ | D. | -2 |
分析 根据同角三角函数关系式即可求解.
解答 解:由$\frac{sinx+1}{cosx}=\frac{1}{2}$,可得:sinx=$\frac{1}{2}cosx$-1,(cosx≠0)
sin2x+cos2x=1,
∴($\frac{1}{2}cosx$-1)2+cos2x=1,
得:$\frac{5}{4}$cos2x-cosx=0,
解得:cosx=$\frac{4}{5}$.
那么:$\frac{sinx-1}{cosx}=\frac{sin+1-2}{cosx}=\frac{1}{2}-\frac{2}{cosx}$=-2.
故选D
点评 本题主要考察了同角三角函数关系式的应用,属于基本知识的考查.
科目:高中数学 来源: 题型:选择题
| A. | 40 | B. | 60 | C. | 80 | D. | 120 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{\sqrt{6}+\sqrt{2}}}{4}$ | B. | $\frac{{\sqrt{6}-\sqrt{2}}}{4}$ | C. | $-\frac{{\sqrt{6}+\sqrt{2}}}{4}$ | D. | $\frac{{\sqrt{2}-\sqrt{6}}}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | $\frac{{\sqrt{3}}}{2}$ | C. | $\sqrt{2}$ | D. | $\frac{{\sqrt{6}}}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $f(x)=sin(8x-\frac{π}{4})$ | B. | $f(x)=sin(8x+\frac{π}{4})$ | C. | $f(x)=sin(\frac{x}{2}-\frac{π}{4})$ | D. | $f(x)=sin(\frac{x}{2}+\frac{π}{4})$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com