精英家教网 > 高中数学 > 题目详情
15.判断下列数列哪一个是等差数列(  )
A.1,3,6,10,15,21…B.1,2,4,8,16,32,…
C.1,$\frac{1}{2}$,$\frac{1}{6}$,$\frac{1}{12}$,$\frac{1}{20}$,…D.-3,0,3,6,9,12…

分析 由等差数列的定义结合选项可得.

解答 解:选项A,3×2≠1+6,不是等差数列;
选项B,2×2≠1+4,不是等差数列;
选项C,$\frac{1}{2}$×2≠1+$\frac{1}{6}$,不是等差数列;
由等差数列的定义可得选项D为等差数列,
故选:D

点评 本题考查等差数列的判定,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.若函数f(x)=$\sqrt{2}$sin(2x+φ)(|φ|<$\frac{π}{2}$)的图象关于直线x=$\frac{π}{12}$对称,且当x1,x2∈(-$\frac{17π}{12}$,-$\frac{2π}{3}$),x1≠x2时,f(x1)=f(x2),则f(x1+x2)等于(  )
A.$\sqrt{2}$B.$\frac{\sqrt{2}}{2}$C.$\frac{\sqrt{6}}{2}$D.$\frac{\sqrt{2}}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.根据下面数列的前几项,写出数列的一个通项公式.
(1)1,1,$\frac{5}{7}$,$\frac{7}{15}$,$\frac{9}{31}$,…
(2)2,22,222,2222,…;
(3)3,0,-3,0,3,…

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知(x+2)7=a0+a1(x-1)+a2(x-1)2+…+a7(x-1)7
(1)求a5
(2)求(x+2)7展开式中系数最大的项.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.商家经销某种商品,原售价为100元/件,每日可售出100件.商家拟降价促销,根据以往经验,若每件降价x,(x∈N*)元,可增加3x件的销售量,则商家应怎样确定降价范围,可使每日销售额比未降价时有所增加?降价多少时每日销售额最大?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知△ABC的三个顶点坐标分别为点A(1,3)、B(-1,-1)、C(2,1),求△ABC的边BC上的高线所在的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.斜率k=2,且过点A(0,1)的直线方程是2x-y+1=0;.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.运行图所示的程序,则输出的结果为(  )
A.23B.21C.19D.17

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.下面有三个命题:
①当x>0时,2x+$\frac{1}{{2}^{x}}$的最小值为2;
②将函数y=cos2x的图象向右平移$\frac{π}{6}$个单位,可以得到函数y=sin(2x-$\frac{π}{6}$)的图象;
③在Rt△ABC中,AC⊥BC,AC=a,BC=b,则△ABC的外接圆半径r=$\frac{\sqrt{{a}^{2}+{b}^{2}}}{2}$;类比到空间,若三棱锥S-ABC的三条侧棱SA、SB、SC两两互相垂直,且长度分别为a、b、c,则三棱锥S-ABC的外接球的半径R=$\frac{\sqrt{{a}^{2}+{b}^{2}+{c}^{2}}}{2}$.
其中错误命题的序号为①②(把你认为错误命题的序号都填上)

查看答案和解析>>

同步练习册答案