| A. | 4 | B. | 3 | C. | 2 | D. | 1 |
分析 ①根据函数的对应法则,可得不管x是有理数还是无理数,均有f(f(x))=1;②根据函数奇偶性的定义,可得f(x)是偶函数;③根据函数的表达式,结合有理数和无理数的性质;④取x1=-$\frac{\sqrt{3}}{3}$,x2=0,x3=$\frac{\sqrt{3}}{3}$,可得A($\frac{\sqrt{3}}{3}$,0),B(0,1),C(-$\frac{\sqrt{3}}{3}$,0),三点恰好构成等边三角形.
解答 解:①∵当x为有理数时,f(x)=1;当x为无理数时,f(x)=0,
∴当x为有理数时,ff((x))=f(1)=1;当x为无理数时,f(f(x))=f(0)=1,
即不管x是有理数还是无理数,均有f(f(x))=1,故①不正确;
接下来判断三个命题的真假
②∵有理数的相反数还是有理数,无理数的相反数还是无理数,
∴对任意x∈R,都有f(-x)=f(x),故②正确;
③若x是有理数,则x+T也是有理数; 若x是无理数,则x+T也是无理数,
∴根据函数的表达式,任取一个不为零的有理数T,f(x+T)=f(x)对x∈R恒成立,故③正确;
④取x1=-$\frac{\sqrt{3}}{3}$,x2=0,x3=$\frac{\sqrt{3}}{3}$,可得f(x1)=0,f(x2)=1,f(x3)=0,
∴A($\frac{\sqrt{3}}{3}$,0),B(0,1),C(-$\frac{\sqrt{3}}{3}$,0),恰好△ABC为等边三角形,故④正确.
即真命题的个数是3个,
故选:B.
点评 本题给出特殊函数表达式,求函数的值并讨论它的奇偶性,着重考查了有理数、无理数的性质和函数的奇偶性等知识,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | -45 | B. | -10 | C. | 45 | D. | 65 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-1,1] | B. | [-1,1] | C. | (1,5] | D. | [1,5] |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (1,+∞) | B. | ($\frac{2\sqrt{3}}{3}$,+∞) | C. | ($\frac{\sqrt{5}+1}{2}$,+∞) | D. | ($\sqrt{2}$+1,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | y=±3x | B. | y=±2$\sqrt{2}$x | C. | y=±($\sqrt{3}$+1)x | D. | y=±($\sqrt{3}$-1)x |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com