| A. | 12 | B. | 13 | C. | 14 | D. | 15 |
分析 设正项等比数列{an}首项为a1,公比为q,由题意可得关于这两个量的方程组,解之可得数列的通项公式和a1+a2+…+an及a1a2…an的表达式,化简可得关于n的不等式,解之可得n的范围,取上限的整数部分即可得答案.
解答 解:根据题意,等比数列{an}中,首项为a1,公比为q,
又由a5=$\frac{1}{4}$,a6+a7=$\frac{3}{2}$,
则有a1q4=$\frac{1}{4}$,a1q5+a1q6=$\frac{3}{2}$,
解可得a1=$\frac{1}{64}$=2n-7,q=2,
则Sn=a1+a2+a3+…+an=$\frac{\frac{1}{64}(1-{2}^{n})}{1-2}$=$\frac{{2}^{n}-1}{64}$,
Πn=a1a2a3…an.=2-6•2-5•2-4•…•2n-7=${2}^{\frac{(n-13)n}{2}}$,
若Sn>Πn,即$\frac{{2}^{n}-1}{64}$>${2}^{\frac{(n-13)n}{2}}$,
化简可得:2n-1>$2\frac{(n-13)n}{2}+6$,
只需满足n>$\frac{(n-13)n}{2}$+6,
解可得$\frac{15-\sqrt{177}}{2}$<n<$\frac{13+\sqrt{177}}{2}$,
由于n为正整数,因此n最大值为13;
故选:B.
点评 本题考查等比数列的求和公式和一元二次不等式的解法,关键是求出等比数列的首项与公比.
科目:高中数学 来源: 题型:选择题
| A. | -2 | B. | 2 | C. | 8 | D. | -8 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | x0<a | B. | 0<x0<1 | C. | b<x0<c | D. | a<x0<b |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | π | B. | 2π | C. | 3π | D. | 4π |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | 3 | C. | $2\sqrt{2}$ | D. | $3\sqrt{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [1,+∞) | B. | (0,1) | C. | (1,+∞) | D. | (-∞,1) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com