精英家教网 > 高中数学 > 题目详情
4.已知3x=2,3y=4,3z=8,则x,y,z为(  )
A.等差数列B.等比数列
C.既是等差,又是等比数列D.都不是

分析 由指数式和对数式的互化公式,分别求出x,y,z,从而得到x+z=2y,由此能求出结果.

解答 解:∵3x=2,3y=4,3z=8,
∴x=log32,y=log34=2log32,z=log38=3log32,
∴x+z=2y,
∴x,y,z为等差数列.
故选:A.

点评 本题考查等差数列、等比数列的判断,是基础题,解题时要认真审题,注意指数式和对数式的互化公式的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.已知双曲线C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的左、右焦点分别为F1,F2,以F2为圆心与双曲线的渐近线相切,若圆F2和双曲线的一个交点为M,满足MF1⊥MF2,则双曲线的离心率是$\frac{5}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.若复数z满足z2=$\frac{3}{4}$-i(i为虚数单位),则z的模为$\frac{\sqrt{5}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图,在矩形ABCD中,AB=2AD,E是CD的中点,以AE为折痕将△ADE向上折起,使D到P点位置,且PC=PB.
(1)若F是BP的中点,求证:CF∥平面APE;
(2)求证:平面APE⊥平面ABCE.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a,b>0)的左、右焦点分别为F1、F2,焦距为6,过右焦点F2向其中一条渐近线作垂线F2H,交渐近线于H点,当△F1F2H的周长取最大值时,双曲线的离心率e=(  )
A.$\sqrt{2}$B.$\frac{\sqrt{6}}{2}$C.$\frac{2\sqrt{3}}{3}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.求下列函数的定义域和值域.
(1)y=2arccos(x-1);
(2)y=2arccos($\frac{1}{2}$-x);
(3)y=arccos$\frac{1}{\sqrt{x}}$;
(4)y=$\sqrt{\frac{π}{3}-arccos(4-x)}$;
(5)y=arccos(x2-x+1)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.经过两点A(-m,6)、B(1,3m)的直线的斜率是6,则m的值为-4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.若程序框图如图所示,则该程序运行后输出的值是10000.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=-$\frac{1}{2}{x^2}$+(a+1)x+(1-a)lnx,a∈R.
(Ⅰ)当a=3时,求曲线C:y=f(x)在点(1,f(1))处的切线方程;
(Ⅱ)当x∈[1,2]时,若曲线C:y=f(x)上的点(x,y)都在不等式组$\left\{{\begin{array}{l}{1≤x≤2}\\{x≤y}\\{y≤x+\frac{3}{2}}\end{array}}$所表示的平面区域内,试求a的取值范围.

查看答案和解析>>

同步练习册答案