精英家教网 > 高中数学 > 题目详情
14.若函数f(x)、g(x)分别是奇函数、偶函数,且f(x)+g(x)=2x-$\frac{1}{x+1}$,则g(x)=$-\frac{2}{1-{x}^{2}}$.

分析 利用函数的奇偶性,列出方程,即可求解函数的解析式.

解答 解:函数f(x)、g(x)分别是奇函数、偶函数,且f(x)+g(x)=2x-$\frac{1}{x+1}$,…①
可得f(-x)+g(-x)=-2x-$\frac{1}{1-x}$,即-f(x)+g(x)=-2x-$\frac{1}{1-x}$,…②,
①+②可得:g(x)=$-\frac{1}{1-x}$-$\frac{1}{x+1}$=$-\frac{2}{1-{x}^{2}}$,
故答案为:$-\frac{2}{1-{x}^{2}}$.

点评 本题考查函数的解析式的求法,函数的奇偶性的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.求下列各三角函数的值
(1)sin$\frac{13π}{6}$;
(2)cos(-$\frac{83π}{6}$).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.函数y=sin2x-2sinx+3的值域是[2,6].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知sinα=$\frac{-3}{5}$,并且α是第三象限的角,求cosα和tanα.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.$\root{5}{5}$,$\root{3}{3}$,$\sqrt{2}$的大小关系是$\root{3}{3}$>$\sqrt{2}$>$\root{5}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知向量$\overrightarrow{a}$、$\overrightarrow{b}$满足|$\overline{a}$|=2,|$\overrightarrow{b}$|=3,且$\overrightarrow{a}$与$\overrightarrow{a}$+$\overrightarrow{b}$夹角的余弦值为$\frac{1}{3}$,则$\overrightarrow{a}$•$\overrightarrow{b}$可以是(  )
A.-2B.-3C.-2$\sqrt{3}$D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.在△ABC中,A=60°,S△ABC=$\sqrt{3}$,$\frac{a+b-c}{sinA+sinB-sinC}$=$\frac{2\sqrt{39}}{3}$,求b.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.下列函数中,其图象关于原点对称的是(  )
A.f(x)=x2B.f(x)=-x3C.f(x)=|x|D.f(x)=x+1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知△ABC中,内角A、B、C的对边分别是a、b、c,a2+c2+ac=b2,D为AC上一点,且AB⊥BD,若AB=CD,则$\frac{AD}{CD}$=$\root{3}{2}$.

查看答案和解析>>

同步练习册答案