精英家教网 > 高中数学 > 题目详情
6.在△ABC中,已知下列条件,解三角形(边长精确到0.1,角度精确到1°):
(1)a=9,c=7,∠A=30°;
(2)b=$\sqrt{5}$,∠A=45°,∠B=105°;
(3)a=5$\sqrt{2}$,b=4$\sqrt{3}$,∠C=105°;
(4)a=8,b=13,c=17.

分析 使用正弦定理解(1),(2),使用余弦定理解(3),(4).

解答 解:(1)由正弦定理得$\frac{a}{sinA}=\frac{c}{sinC}$,∴sinC=$\frac{csinA}{a}$≈0.3889,
∵a>c,∴C<30°,∴C≈22.9°,∴B=180°-A-C≈127.1°,
由正弦定理得$\frac{a}{sinA}=\frac{b}{sinB}$,∴b=$\frac{asinB}{sinA}$≈14.7.
(2)C=180°-A-B=30°,
由正弦定理得$\frac{a}{sinA}=\frac{b}{sinB}=\frac{c}{sinC}$,
∴a=$\frac{bsinA}{sinB}$≈1.6,c=$\frac{bsinC}{sinB}$≈1.1.
(3)由余弦定理得c2=a2+b2-2abcosC=50+48-40$\sqrt{6}$cos105°≈123.36,
∴c≈$\sqrt{123.36}$≈11.1,
由余弦定理得cosA=$\frac{{b}^{2}+{c}^{2}-{a}^{2}}{2bc}$≈0.789,∴A≈37.9°,
∴B=180°-A-C≈37.1°.
(4)由余弦定理得:cosA=$\frac{{b}^{2}+{c}^{2}-{a}^{2}}{2bc}$≈0.891,∴A≈27.0°
由余弦定理得cosB=$\frac{{a}^{2}+{c}^{2}-{b}^{2}}{2ac}$≈0.676,∴B≈47.5°,
∴C=180°-A-B≈105.5°.

点评 本题考查了正余弦定理在解三角形中的应用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.已知复数z=1-i(i是虚数单位),若z2+a$\overline z$+b=3-3i,则|a+bi|=$\sqrt{17}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知等轴双曲线一条准线的方程为y=$\sqrt{2}$,则该双曲线的标准方程为$\frac{{y}^{2}}{4}$-$\frac{{x}^{2}}{4}$=1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知函数y=f(x)的定义域为(-∞,-2]∪[2,+∞),且满足f(x+$\frac{1}{x}$)=x2+$\frac{1}{{x}^{2}}$,则f(x)=x2-2,x≠0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知阶梯教室有30排座位,第一排有10个座位,往后每排都比前一排多2个座位,1200名学生来听讲座,座位够吗?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知两个简谐交流电的电流强度为i1=$\sqrt{3}$sin(100πt+$\frac{π}{3}$)和i2=sin(100πt-$\frac{π}{6}$),求i=i1+i2,并指出其频率和初相位.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.圆的方程为x2+y2-6x-8y=0,过坐标原点作长度为6的弦,则弦所在的直线方程为y=0或24x-7y=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=Acos(ωx+φ)(A>0,ω>0,φ∈R)
(1)判断“f(x)为偶函数”是“φ=π”的什么条件;
(2)证明:f(x)为奇函数的充要条件是φ=kπ+$\frac{π}{2}$(k∈Z)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.某观察站C在A城的南偏西20°方向,由A城出发有一条公路,走向是南偏东40°,距离C处31千米的公路上的B处有一人正沿公路向A城走去,走了20千米后到达D处,此时C、D距离为21千米,问此人还需走(  )千米才能到达A城.
A.5B.10C.15D.25

查看答案和解析>>

同步练习册答案