精英家教网 > 高中数学 > 题目详情
10.如图程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输入a,b分别为14,18,则输出的a=(  )
A.0B.2C.4D.14

分析 模拟执行程序框图,依次写出每次循环得到的a,b的值,当a=b=2时不满足条件a≠b,输出a的值为2.

解答 解:模拟执行程序框图,可得
a=14,b=18
满足条件a≠b,不满足条件a>b,b=4
满足条件a≠b,满足条件a>b,a=10
满足条件a≠b,满足条件a>b,a=6
满足条件a≠b,满足条件a>b,a=2
满足条件a≠b,不满足条件a>b,b=2
不满足条件a≠b,输出a的值为2.
故选:B.

点评 本题主要考查了循环结构程序框图,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.设a>0,b>0,且a+b=$\frac{1}{a}$+$\frac{1}{b}$.证明:
(ⅰ)a+b≥2;
(ⅱ)a2+a<2与b2+b<2不可能同时成立.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设D为△ABC所在平面内一点,$\overrightarrow{BC}=3\overrightarrow{CD}$,则(  )
A.$\overrightarrow{AD}=-\frac{1}{3}\overrightarrow{AB}+\frac{4}{3}\overrightarrow{AC}$B.$\overrightarrow{AD}=\frac{1}{3}\overrightarrow{AB}-\frac{4}{3}\overrightarrow{AC}$C.$\overrightarrow{AD}=\frac{4}{3}\overrightarrow{AB}+\frac{1}{3}\overrightarrow{AC}$D.$\overrightarrow{AD}=\frac{4}{3}\overrightarrow{AB}-\frac{1}{3}\overrightarrow{AC}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.如图,已知圆C与x轴相切于点T(1,0),与y轴正半轴交于两点A,B(B在A的上方),且|AB|=2.
(1)圆C的标准方程为(x-1)2+(y-$\sqrt{2}$)2=2.
(2)圆C在点B处切线在x轴上的截距为-1-$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知a≥b>0,求证:2a3-b3≥2ab2-a2b.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.△ABC中,D是BC上的点,AD平分∠BAC,BD=2DC
(Ⅰ) 求$\frac{sin∠B}{sin∠C}$.
(Ⅱ) 若∠BAC=60°,求∠B.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.阅读如图的程序框图,运行相应的程序,则输出S的值为(  )
A.-10B.6C.14D.18

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设A,B是有限集,定义:d(A,B)=card(A∪B)-card(A∩B),其中card(A)表示有限集A中的元素个数(  )
命题①:对任意有限集A,B,“A≠B”是“d(A,B)>0”的充分必要条件;
命题②:对任意有限集A,B,C,d(A,C)≤d(A,B)+d(B,C)
A.命题①和命题②都成立B.命题①和命题②都不成立
C.命题①成立,命题②不成立D.命题①不成立,命题②成立

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,在直三棱柱ABC-A1B1C1中,已知AC⊥BC,BC=CC1,设AB1的中点为D,B1C∩BC1=E.
求证:
(1)DE∥平面AA1C1C;
(2)BC1⊥AB1

查看答案和解析>>

同步练习册答案