17£®Öƶ¨Í¶×ʼƻ®Ê±£¬²»½öÒª¿¼ÂÇ¿ÉÄÜ»ñµÃµÄÓ¯Àû£¬¶øÇÒÒª¿¼ÂÇ¿ÉÄܳöÏֵĿ÷Ëð£®Ä³Í¶×ÊÈË´òËãͶ×ʼס¢ÒÒÁ½¸öÏîÄ¿£®¸ù¾ÝÔ¤²â£¬¼×¡¢ÒÒÁ½¸öÏîÄ¿¿ÉÄܵÄ×î´óÓ¯Àû·Ö±ðΪ100%ºÍ50%£¬¿ÉÄܵÄ×î´ó¿÷Ëð·Ö±ðΪ30%ºÍ10%£®Í¶×ÊÈ˼ƻ®Í¶×ʽð¶î²»³¬¹ý10ÍòÔª£¬ÒªÇóÈ·±£¿ÉÄܵÄ×ʽð¿÷Ëð²»³¬¹ý1.8ÍòÔª£®Í¶×ÊÈ˶Լ×ÒÒÁ½¸öÏîÄ¿¸÷Ͷ×ʶàÉÙÍòÔª£¬²ÅÄÜʹ¿ÉÄܵÄÓ¯Àû×î´ó£¿×î´óÓ¯Àû¶îΪ¶àÉÙ£¿

·ÖÎö ÓÉÌâÒâÉè³öÁ½¸ö±äÁ¿£¬Áгö²»µÈʽ×éÒÔ¼°Ä¿±êº¯Êý£¬ÀûÓüòµ¥ÏßÐԹ滮ÇóÄ¿±êº¯ÊýµÄ×îÓŽ⣮

½â´ð ½â£ºÉè¼×¡¢ÒÒÁ½¸öÏîÄ¿µÄͶ×Ê·Ö±ðΪxÍòÔª£¬yÍòÔª£¬ÀûÈóΪz£¨ÍòÔª£©£¬
ÓÉÌâÒâÓУº$\left\{{\begin{array}{l}{x+y¡Ü10}\\{0.3x+0.1y¡Ü1.8}\\{x¡Ý0£¬y¡Ý0}\end{array}}\right.$¼´$\left\{\begin{array}{l}{x+y¡Ü10}\\{3x+y¡Ü18}\\{x¡Ý0£¬y¡Ý0}\end{array}\right.$£¬z=x+0.5y£®×÷³ö²»µÈʽ×éµÄÆ½ÃæÇøÓò£º
µ±Ö±Ïßy=-2x+2z¹ýµãMʱ£¬×ݺá¾à×î´ó£¬ÕâʱzҲȡµÃ×î´óÖµ£®
½â·½³Ì×é$\left\{{\begin{array}{l}{x+y=10}\\{3x+y=18}\end{array}}\right.$£®µÃx=4£¬y=6£¬¼´M£¨4£¬6£©£¬z=1¡Á4+0.5¡Á6=7£®
¹ÊͶ×ÊÈËͶ×ʼ×ÏîÄ¿4ÍòÔª£¬Í¶×ÊÒÒÏîÄ¿6ÍòÔª£¬¿ÉÄܵÄÓ¯Àû×î´ó£¬×î´óÓ¯Àû7ÍòÔª£®

µãÆÀ ±¾Ì⿼²éÁ˼òµ¥ÏßÐԹ滮ÎÊÌâµÄÓ¦Óã»ÕýÈ·Àí½âÌâÒ⣬Áгö²»µÈʽ×éÒÔ¼°Ä¿±êº¯ÊýÊǹؼü£»ÔËÓÃÁËÊýÐνáºÏµÄ˼Ï룮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®ÒÑÖªº¯Êýf£¨x£©=x2-$\frac{2}{3}$ax3£¨a£¾0£©£¬x¡ÊR£®Çóf£¨x£©µÄµ¥µ÷Çø¼äºÍ¼«Öµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

8£®ÒÑ֪ʵÊýx£¬y£¬zÂú×ãx+2y+z=1£¬Ôòx2+4y2+z2µÄ×îСֵÊÇ$\frac{1}{3}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

5£®Ò»¸ö¼¸ºÎÌåµÄÈýÊÓͼ¼°³ß´çÈçͼËùʾ£¬ÆäÖÐÕýÊÓͼÊÇÖ±½ÇÈý½ÇÐΣ¬²àÊÓͼÊǰëÔ²£¬¸©ÊÓͼÊǵÈÑüÈý½ÇÐΣ¬¸Ã¼¸ºÎÌåµÄÌå»ýΪ£¨¡¡¡¡£©
A£®$\frac{4}{3}$¦ÐB£®$\frac{4\sqrt{2}}{3}$¦ÐC£®4¦ÐD£®4$\sqrt{2}$¦Ð

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

12£®É輯ºÏA={x|x2-1£¼0}£¬B={y|y=2x£¬x¡ÊA}£¬ÔòA¡ÉB=£¨¡¡¡¡£©
A£®£¨0£¬1£©B£®£¨-1£¬2£©C£®£¨-1£¬+¡Þ£©D£®$£¨\frac{1}{2}£¬1£©$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

2£®É輯ºÏA={x|x2-1£¼0}£¬B={y|y=2x£¬x¡ÊA}£¬ÔòA¡ÉB=£¨¡¡¡¡£©
A£®£¨0£¬1£©B£®£¨$\frac{1}{2}$£¬1£©C£®£¨-1£¬2£©D£®£¨-1£¬+¡Þ£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

9£®ÒÑ֪ȫ¼¯U=R£¬A={y|y=2x+1}£¬B={x||x-1|£¼2}£¬Ôò£¨∁UA£©¡ÉB=£¨-1£¬1]£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®ÉèÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄ×óÓÒ½¹µã·Ö±ðΪF1£¬F2£¬Ï¶¥µãΪB£¬Ö±ÏßBF2µÄ·½³ÌΪx-y-b=0£®
£¨¢ñ£©ÇóÍÖÔ²CµÄÀëÐÄÂÊ£»
£¨¢ò£©ÉèPΪÍÖÔ²ÉÏÒìÓÚÆä¶¥µãµÄÒ»µã£¬Pµ½Ö±ÏßBF2µÄ¾àÀëΪ$\sqrt{2}$b£¬ÇÒÈý½ÇÐÎPF1F2µÄÃæ»ýΪ$\frac{1}{3}$£®
£¨1£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨2£©ÈôбÂÊΪkµÄÖ±ÏßlÓëÍÖÔ²CÏàÇУ¬¹ý½¹µãF1£¬F2·Ö±ð×÷F1M¡Íl£¬F2M¡Íl£¬´¹×ã·Ö±ðΪM£¬N£¬Çó£¨|F1M|+|F2N|£©•|MN|µÄ×î´óÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

10£®ÒÑÖªaΪʵ³£Êý£¬º¯Êýf£¨x£©=lnx-ax+1£®
£¨1£©Èôf£¨x£©ÔÚ£¨1£¬+¡Þ£©ÊǼõº¯Êý£¬ÇóʵÊýaµÄȡֵ·¶Î§£»
£¨2£©µ±0£¼a£¼1ʱº¯Êýf£¨x£©ÓÐÁ½¸ö²»Í¬µÄÁãµãx1£¬x2£¨x1£¼x2£©£¬ÇóÖ¤£º$\frac{1}{e}$£¼x1£¼1ÇÒx1+x2£¾2£®£¨×¢£ºeΪ×ÔÈ»¶ÔÊýµÄµ×Êý£©£»
£¨3£©Ö¤Ã÷$\frac{ln2}{3}$+$\frac{ln3}{4}$+$\frac{ln4}{5}$+¡­+$\frac{lnn}{n+1}$£¼$\frac{{n}^{2}-n}{4}$£¨n¡ÊN*£¬n¡Ý2£©

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸