精英家教网 > 高中数学 > 题目详情
(本小题满分14分)矩形纸片ABCD的边AB=6,AD=10,点E、F分别在边AB和BC上(不含端点). 现将纸片的右下角沿EF翻折,使得顶点B翻折后的新位置B1恰好落在边AD上. 设,EF=l,l关于t的函数为.

试求:(1)函数f(t)的定义域;
(2)函数f(t)的最小值.
(1)(2)
(1)设
据题意知为锐角,所以,从而
由于
所以            
因为,且AE+EB=6,       
所以,即
因为F点在BC上,所以,即,亦即
所以,即,解得.              
于是有,即.
故函数f(t)的定义域为            8分
(2) 由(1)得
,则由 , 得: 
因此当时,单调增,当时,单调减.
时,取最大值,f(t)取最小值       14分
【命题意图】本题考查函数的定义域,值域,二倍角公式,利用导数求函数最值等知识 ,意在考查学生的抽象概括能力,运算求解能力.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数.
(1)当a=l时,求的单调区间;
(2)若函数上是减函数,求实数a的取值范围;
(3)令,是否存在实数a,当(e是自然对数的底数)时,函数g(x)最小值是3,若存在,求出a的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知
(1)证明函数上是增函数;
(2)用反证法证明方程没有负数根.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(1)当  时,求函数  的最小值;
(2)当 时,求证:无论取何值,直线均不可能与函数相切;
(3)是否存在实数,对任意的 ,且,有恒成立,若存在求出的取值范围,若不存在,说明理由。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=ln x-ax+1在x=2处的切线斜率为-.
(1)求实数a的值及函数f(x)的单调区间;
(2)设g(x)=,对?x1∈(0,+∞),?x2∈(-∞,0)使得f(x1)≤g(x2)成立,求正实数k的取值范围;
(3)证明: ++…+<(n∈N*,n≥2).

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(1)求函数的单调区间和极值;
(2)当,且时,证明:

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知函数f(x)=+lnx,若函数f(x)在[1,+∞)上为增函数,则正实数a的取值范围为________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

函数的导函数的图像如图所示,则(   )
A.的极大值点B.的极大值点
C.的极大值点D.的极小值点

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=ax3+(a-2)x+c的图象如图所示.

(1)求函数y=f(x)的解析式;
(2)若g(x)=-2ln x在其定义域内为增函数,求实数k的取值范围.

查看答案和解析>>

同步练习册答案