精英家教网 > 高中数学 > 题目详情
已知函数
(1)当  时,求函数  的最小值;
(2)当 时,求证:无论取何值,直线均不可能与函数相切;
(3)是否存在实数,对任意的 ,且,有恒成立,若存在求出的取值范围,若不存在,说明理由。
(1)-2ln2;(2)详见解析;(3)存在实数,

试题分析:(1)把a=1代入函数解析式,求导后得到导函数的零点,由导函数的零点对定义域分段,根据导函数在各区间段内的符号得到原函数的单调性,从而求出函数f(x)的最小值;(2)把a=-1代入原函数,求出导函数后利用基本不等式求出导函数的值域,从而说明无论c 取何值,直线均不可能与函数f(x)相切;(3)假设存在实数a使得对任意的 ,且 ,有恒成立,假设 ,则 恒成立,构造辅助函数 ,只要使函数g(x)在定义域内为增函数即可,利用其导函数恒大于等于0可求解a的取值范围.
解;(1)显然函数的定义域为,        
   
∴ 当
时取得最小值,其最小值为
(2)∵
假设直线与相切,设切点为,则
所以所以无论取何值,直线均不可能与函数相切。
(3)假设存在实数使得对任意的 ,且,有,恒成立,不妨设,只要,即:
,只要 为增函数
又函数
考查函数 
要使,
故存在实数恒成立.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)="xlnx" (x 1)(ax a+1)(a∈R).
(1)若a=0,判断f(x)的单调性;.
(2)若x>1时,f(x)<0恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

函数f(x)=x2-2lnx的单调递减区间是(  )
A.(0,1]B.[1,+∞)
C.(-∞,-1]∪(0,1]D.[-1,0)∪(0,1]

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

,曲线在点处的切线与直线垂直.
(1)求的值;
(2)若对于任意的恒成立,求的范围;
(3)求证:

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

水库的蓄水量随时间而变化,现用表示时间,以月为单位,年初为起点,根据历年数据,某水库的蓄水量(单位:亿立方米)关于的近似函数关系式为

(1)该水库的蓄求量小于50的时期称为枯水期.以表示第1月份(),同一年内哪几个月份是枯水期?
(2)求一年内该水库的最大蓄水量(取计算).

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)矩形纸片ABCD的边AB=6,AD=10,点E、F分别在边AB和BC上(不含端点). 现将纸片的右下角沿EF翻折,使得顶点B翻折后的新位置B1恰好落在边AD上. 设,EF=l,l关于t的函数为.

试求:(1)函数f(t)的定义域;
(2)函数f(t)的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数 
求证:当时,函数在区间上是单调递减函数;
的取值范围,使函数在区间上是单调函数.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设函数f(x)满足x2f′(x)+2xf(x)=,f(2)=,则x>0时,f(x)(  )
A.有极大值,无极小值
B.有极小值,无极大值
C.既有极大值又有极小值
D.既无极大值也无极小值

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知函数在区间上是减函数,那么的最大值为            

查看答案和解析>>

同步练习册答案