精英家教网 > 高中数学 > 题目详情

【题目】如图,在三棱锥P﹣ABC中,∠APB=90°,∠PAB=60°,AB=BC=CA,平面PAB⊥平面ABC. (Ⅰ)求直线PC与平面ABC所成角的大小;
(Ⅱ)求二面角B﹣AP﹣C的大小.

【答案】解法一 (Ⅰ)设AB中点为D,AD中点为O,连接OC,OP,CD

因为AB=BC=CA,所以CD⊥AB,
因为∠APB=90°,∠PAB=60°,所以△PAD为等边三角形,所以PO⊥AD,又平面PAB⊥平面ABC,平面PAB∩平面ABC=AD.
PO⊥平面ABC,∠OCP为直线PC与平面ABC所成的角
不妨设PA=2,则OD=1,OP= ,AB=4.
所以CD=2 ,OC= = =
在RT△OCP中,tan∠OCP= = =
故直线PC与平面ABC所成的角的大小为arctan
(Ⅱ)过D作DE⊥AP于E,连接CE.

由已知,可得CD⊥平面PAB.根据三垂线定理知,CE⊥PA.所以∠CED为二面角
B﹣AP﹣C的平面角.由(Ⅰ)知,DE= ,在RT△CDE中,tan∠CED= = =2,故二面角B﹣AP﹣C的大小为arctan2.
解法二:(Ⅰ)设AB中点为D,连接CD.因为O在AB上,且O为P在平面ABC内的射影,
所以PO⊥平面ABC,所以PO⊥AB,且PO⊥CD.因为AB=BC=CA,所以CD⊥AB,设E为AC中点,则EO∥CD,从而OE⊥PO,OE⊥AB.
如图,以O为坐标原点,OB,OE,OP所在直线分别为x,y,z轴建立空间直角坐标系O﹣xyz.

不妨设PA=2,由已知可得,AB=4,OA=OD=1,OP=
CD=2 ,所以O(0,0,0),A(﹣1,0,0),C(1,2 ,0),P(0,0, ),所以 =(﹣1,﹣2 =(0,0, )为平面ABC的一个法向量.
设α为直线PC与平面ABC所成的角,则sinα= = = .故直线PC与平面ABC所成的角大小为arcsin
(Ⅱ)由(Ⅰ)知, =(1,0, ), =(2,2 ,0).
设平面APC的一个法向量为 =(x,y,z),则由 得出
取x=﹣ ,则y=1,z=1,所以 =(﹣ ,1,1).设二面角B﹣AP﹣C的平面角为β,易知β为锐角.
而面ABP的一个法向量为 =(0,1,0),则cosβ= = =
故二面角B﹣AP﹣C的大小为arccos
【解析】解法一(Ⅰ)设AB中点为D,AD中点为O,连接OC,OP,CD.可以证出∠OCP为直线PC与平面ABC所成的角.不妨设PA=2,则OD=1,OP= ,AB=4.在RT△OCP中求解.(Ⅱ)以O为原点,建立空间直角坐标系,利用平面APC的一个法向量与面ABP的一个法向量求解. 解法二(Ⅰ)设AB中点为D,连接CD.以O为坐标原点,OB,OE,OP所在直线分别为x,y,z轴建立空间直角坐标系O﹣xyz.利用 与平面ABC的一个法向量夹角求解.(Ⅱ)分别求出平面APC,平面ABP的一个法向量,利用两法向量夹角求解.
【考点精析】解答此题的关键在于理解空间角的异面直线所成的角的相关知识,掌握已知为两异面直线,A,C与B,D分别是上的任意两点,所成的角为,则,以及对用空间向量求直线与平面的夹角的理解,了解设直线的方向向量为,平面的法向量为,直线与平面所成的角为的夹角为, 则的余角或的补角的余角.即有:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】葫芦岛市某高中进行一项调查:2012年至2016年本校学生人均年求学花销 (单位:万元)的数据如下表:

年份

2012

2013

2014

2015

2016

年份代号

1

2

3

4

5

年求学花销

3.2

3.5

3.8

4.6

4.9

附:回归直线的斜率和截距的最小二乘法估计公式分别为:

(1)求 关于 的线性回归方程;
(2)利用(1)中的回归方程,分析2012年至2016年本校学生人均年求学花销的变化情况,并预测该地区2017年本校学生人均年求学花销情况.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= 的定义域为M.
(1)求M;
(2)当x∈M时,求 +1的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知α∈[ ],β∈[﹣ ,0],且(α﹣ 3﹣sinα﹣2=0,8β3+2cos2β+1=0,则sin( +β)的值为(
A.0
B.
C.
D.1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在正方体ABCD﹣A1B1C1D1中,E、F分别为CD、DD1的中点,则异面直线EF与A1C1所成角的余弦值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在班级的演讲比赛中,将甲、乙两名同学的得分情况制成如图所示的茎叶图.记甲、乙两名同学所得分数的平均分分别为 , 则下列判断正确的是(
A. , 甲比乙成绩稳定
B. 乙,甲比乙成绩稳定
C. , 乙比甲成绩稳定
D. , 乙比甲成绩稳定

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C过点A(1,4),B(3,2),且圆心在x轴上,求圆C的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|< )的图象与y轴的交点为(0,1),它在y轴右侧的第一个最高点和最低点分别为(x0 , 2),(x0+ ,﹣2).
(1)求函数y=f(x)的解析式和单调递增区间;
(2)若当0≤x≤ 时,方程f(x)﹣m=0有两个不同的实数根α,β,试讨论α+β的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=2sin(ωx+φ)(﹣π<φ<0,ω>0)的图象关于直线 对称,且两相邻对称中心之间的距离为
(1)求函数y=f(x)的单调递增区间;
(2)若关于x的方程f(x)+log2k=0在区间 上总有实数解,求实数k的取值范围.

查看答案和解析>>

同步练习册答案