精英家教网 > 高中数学 > 题目详情
7.已知函数f(x)=-2xlnx+x2-2ax+a2,其中a>0.
(Ⅰ)设g(x)是f(x)的导函数,讨论g(x)的单调性;
(Ⅱ)证明:存在a∈(0,1),使得f(x)≥0恒成立,且f(x)=0在区间(1,+∞)内有唯一解.

分析 (I)函数f(x)=-2xlnx+x2-2ax+a2,其中a>0.可得:x>0.g(x)=f′(x)=2(x-1-lnx-a),可得g′(x)=$2-\frac{2}{x}$=$\frac{2(x-1)}{x}$,分别解出g′(x)<0,g′(x)>0,即可得出单调性.
(II)由f′(x)=2(x-1-lnx-a)=0,可得a=x-1-lnx,代入f(x)可得:u(x)=(1+lnx)2-2xlnx,利用函数零点存在定理可得:存在x0∈(1,e),使得u(x0)=0,令a0=x0-1-lnx0=v(x0),再利用导数研究其单调性即可得出.

解答 (I)解:函数f(x)=-2xlnx+x2-2ax+a2,其中a>0.可得:x>0.
g(x)=f′(x)=2(x-1-lnx-a),∴g′(x)=$2-\frac{2}{x}$=$\frac{2(x-1)}{x}$,
当0<x<1时,g′(x)<0,函数g(x)单调递减;
当1<x时,g′(x)>0,函数g(x)单调递增.
(II)证明:由f′(x)=2(x-1-lnx-a)=0,解得a=x-1-lnx,
令u(x)=-2xlnx+x2-2(x-1-lnx)x+(x-1-lnx)2=(1+lnx)2-2xlnx,
则u(1)=1>0,u(e)=2(2-e)<0,
∴存在x0∈(1,e),使得u(x0)=0,
令a0=x0-1-lnx0=v(x0),其中v(x)=x-1-lnx(x≥1),
由v′(x)=1-$\frac{1}{x}$≥0,可得:函数v(x)在区间(1,+∞)上单调递增.
∴0=v(1)<a0=v(x0)<v(e)=e-2<1,即a0∈(0,1),当a=a0时,有f′(x0)=0,f(x0)=u(x0)=0.
再由(I)可知:f′(x)在区间(1,+∞)上单调递增,
当x∈(1,x0)时,f′(x)<0,∴f(x)>f(x0)=0;
当x∈(x0,+∞)时,f′(x)>0,∴f(x)>f(x0)=0;
又当x∈(0,1],f(x)=$(x-{a}_{0})^{2}$-2xlnx>0.
故当x∈(0,+∞)时,f(x)≥0恒成立.
综上所述:存在a∈(0,1),使得f(x)≥0恒成立,且f(x)=0在区间(1,+∞)内有唯一解.

点评 本题考查了导数的运算法则、函数的零点、利用导数研究函数的单调性极值,考查了分类讨论思想方法、推理能力与计算能力,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.在平面四边形ABCD中,∠A=∠B=∠C=75°.BC=2,则AB的取值范围是($\sqrt{6}$-$\sqrt{2}$,$\sqrt{6}$+$\sqrt{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.某几何体的三视图如图所示,则该几何体的体积为(  )
A.$\frac{1}{3}+2π$B.$\frac{13π}{6}$C.$\frac{7π}{3}$D.$\frac{5π}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设向量$\overrightarrow{a}$=(2,4)与向量$\overrightarrow{b}$=(x,6)共线,则实数x=(  )
A.2B.3C.4D.6

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.在三棱住ABC-A1B1C1中,∠BAC=90°,其正视图和侧视图都是边长为1的正方形,俯视图是直角边长为1的等腰直角三角形,设M,N,P分别是AB,BC,B1C1的中点,则三棱锥P-A1MN的体积是$\frac{1}{24}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.函数y=xex在其极值点处的切线方程为y=-$\frac{1}{e}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若(1+i)+(2-3i)=a+bi(a,b∈R,i是虚数单位),则a,b的值分别等于(  )
A.3,-2B.3,2C.3,-3D.-1,4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知点F为抛物线E:y2=2px(p>0)的焦点,点A(2,m)在抛物线E上,且|AF|=3,
(Ⅰ)求抛物线E的方程;
(Ⅱ)已知点G(-1,0),延长AF交抛物线E于点B,证明:以点F为圆心且与直线GA相切的圆,必与直线GB相切.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设变量x,y满足约束条件$\left\{\begin{array}{l}{x-2≤0}\\{x-2y≤0}\\{x+2y-8≤0}\end{array}\right.$则目标函数z=3x+y的最大值为(  )
A.7B.8C.9D.14

查看答案和解析>>

同步练习册答案