精英家教网 > 高中数学 > 题目详情
19.已知f(x)=log2$\frac{x+1}{x-1}$(其中x>1),g(x)=x2-2ax+a2+b(其中x∈R,a>0,b>1),则下列判断正确的是(  )
A.f(g(a-1))>f(g(a))B.f(g($\frac{2a}{3}$))>f(g($\frac{5a}{3}$))
C.g(f($\frac{{4}^{n}+1}{{4}^{n}-1}$))>g(f(3))(其中a≠0且a$≠\frac{1}{2}$)D.g(f($\frac{{2}^{n}+1}{{2}^{n}-1}$))>g(f(3))(其中a≠0,且a≠1)

分析 根据复合函数的单调性,先求出函数f(x)与g(x)的单调区间,再分别利用函数的单调性进行判断即可.

解答 解:∵f(x)=log2$\frac{x+1}{x-1}$=log2(1+$\frac{2}{x-1}$),
设t=1+$\frac{2}{x-1}$,
则t在(1,+∞)上单调递减,
∴y=f(x)在(1,+∞)上单调递减,
∵g(x)=x2-2ax+a2+b=(x-a)2+b,
∴g(x)=(x-a)2+b,在(-∞,a)上单调递减,(a,+∞)上单调递增,
对于A,∵g(a-1)-g(a)=1>0,且g(a)>1,∴g(a-1)>g(a)>1,
∵y=f(x)在(1,+∞)单调递减,
∴f(g(a-1))<f(g(a),故A不正确
对于B.∵g($\frac{2a}{3}$)<g($\frac{5a}{3}$),且g($\frac{2a}{3}$)>1,
∴f(g($\frac{2a}{3}$))>f(g($\frac{5a}{3}$)),故B正确
对于C,$\frac{{4}^{n}+1}{{4}^{n}-1}$=1+$\frac{2}{{4}^{n}-1}$,则1<$\frac{{4}^{n}+1}{{4}^{n}-1}$≤2,
∴f($\frac{{4}^{n}+1}{{4}^{n}-1}$)>f(3),
∵f(3)=1,f($\frac{{4}^{n}+1}{{4}^{n}-1}$)>1,
∴无法比较g(f($\frac{{4}^{n}+1}{{4}^{n}-1}$))与g(f(3))的大小,
对于D,$\frac{{2}^{n}+1}{{2}^{n}-1}$=1+$\frac{2}{{2}^{n}-1}$,则1<$\frac{{2}^{n}+1}{{2}^{n}-1}$≤3,
∴f($\frac{{2}^{n}+1}{{2}^{n}-1}$)≥(f(3)),
∵f(3)=1,f($\frac{{2}^{n}+1}{{2}^{n}-1}$)≥1
∴无法比较g(f($\frac{{2}^{n}+1}{{2}^{n}-1}$))>g(f(3))(其中a≠0,且a≠1)的大小,
故选:B.

点评 本题考查了利用函数的单调性比较大小,关键是求出函数f(x)与g(x)的单调区间,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.已知等差数列{an}满足:a5=5,a2+a6=8.
(1)求{an}的通项公式;
(2)若bn=2${\;}^{{a}_{n}}$,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.设函数f(x)=2cos2x+2sinxcosx.
(1)求$f({\frac{π}{8}})$的值;
(2)求函数f(x)在区间$[{0,\frac{π}{2}}]$上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知椭圆$\frac{x^2}{25}$+$\frac{y^2}{9}$=1的两个焦点为F1,F2,P为椭圆上一点,∠F1PF2
(1)求椭圆的长轴长,短轴长,顶点,离心率.
(2)求证:$S_{△{F_1}P{F_2}}$=9tan$\frac{θ}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.求适合下列条件的椭圆的标准方程:
(1)椭圆上一点P(3,2)到两焦点的距离之和为8;
(2)椭圆两焦点间的距离为16,且椭圆上某一点到两焦点的距离分别等于9或15.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.指数函数f(x)=ax+1的图象恒过定点(-1,1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=$\frac{a-{2}^{x}}{1+{2}^{x}}$(a∈R),且x∈R时,总有f(-x)=-f(x)成立.
(1)求a的值;
(2)判断并证明函数f(x)的单调性;
(3)求f(x)在[0,2]上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.(1-x-3y)5的展开式中不含x的项的系数和为(  )
A.32B.-32C.64D.-64

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知$cos(\frac{π}{6}+α)=-\frac{1}{3}$,则$sin(α-\frac{π}{3})$的值为$\frac{1}{3}$.

查看答案和解析>>

同步练习册答案