分析 求出椭圆的a,b,c,运用勾股定理和椭圆的定义,可得|PF1|•|PF2|=18,再由三角形的面积公式,计算即可得到所求值.
解答 解:∵PF1⊥PF2,
∴|PF1|2+|PF2|2=|F1F2|2,
由椭圆$C:\frac{x^2}{25}+\frac{y^2}{9}=1$,知a=5,b=3,
∴c=$\sqrt{{a}^{2}-{b}^{2}}$=4,
∵PF1⊥PF2,
∴|PF1|2+|PF2|2=|F1F2|2=4c2=64,
由椭圆的定义可得:|PF1|+|PF2|=2a=10,
解得|PF1|•|PF2|=18.
∴△PF1F2的面积为$\frac{1}{2}$|PF1|•|PF2|=$\frac{1}{2}$×18=9.
点评 本题考查椭圆的定义、方程和性质,考查三角形的面积的求法,属于基础题.
科目:高中数学 来源: 题型:选择题
| A. | a≠0,c=0 | B. | a=0,c=0 | C. | c=0 | D. | c≠0 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | B. | C. | D. |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com