精英家教网 > 高中数学 > 题目详情
14.在直三棱柱ABC-A1B1C1中,AB=AC=1,AA1=$\sqrt{2}$,且D为BC中点.
(1)求证:A1C∥平面AB1D;
(2)设N为棱CC1的中点,且满足AB⊥AC,求证:平面AB1D⊥平面ABN.

分析 (1)连结A1B,AB1,交于点O,连结OD,推导出OD∥A1C,由此能证明A1C∥平面AB1D.
(2)以A为原点,AB为x轴,AC为y轴,AA1为z轴,建立空间直角坐标系,利用向量法能证明平面AB1D⊥平面ABN.

解答 证明:(1)连结A1B,AB1,交于点O,连结OD,
∵直三棱柱ABC-A1B1C1中,ABB1A1是矩形,∴O是A1B中点,
∵D是BC中点,∴OD∥A1C,
∵A1C?平面AB1D,OD?平面AB1D,
∴A1C∥平面AB1D.
(2)以A为原点,AB为x轴,AC为y轴,AA1为z轴,建立空间直角坐标系,
则A(0,0,0),B(1,0,0),C(0,1,0),D($\frac{1}{2},\frac{1}{2}$,0),N(0,1,$\frac{\sqrt{2}}{2}$),
B1(1,0,$\sqrt{2}$),
$\overrightarrow{A{B}_{1}}$=(1,0,$\sqrt{2}$),$\overrightarrow{AD}$=($\frac{1}{2},\frac{1}{2}$,0),
$\overrightarrow{AB}$=(1,0,0),$\overrightarrow{AN}$=(0,1,$\frac{\sqrt{2}}{2}$),
设平面AB1D的法向量$\overrightarrow{n}$=(x,y,z),
则$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{A{B}_{1}}=x+\sqrt{2}z=0}\\{\overrightarrow{n}•\overrightarrow{AD}=\frac{1}{2}x+\frac{1}{2}y=0}\end{array}\right.$,取z=1,得$\overrightarrow{n}=(-\sqrt{2},\sqrt{2},1)$,
设平面ABN的法向量$\overrightarrow{m}$=(a,b,c),
则$\left\{\begin{array}{l}{\overrightarrow{m}•\overrightarrow{AB}=a=0}\\{\overrightarrow{m}•\overrightarrow{AN}=b+\frac{\sqrt{2}}{2}c=0}\end{array}\right.$,取b=$\sqrt{2}$,得$\overrightarrow{m}$=(0,$\sqrt{2}$,-2),
∵$\overrightarrow{m}•\overrightarrow{n}$=0+2-2=0,
∴平面AB1D⊥平面ABN.

点评 本题考查线面平行的证明,考查面面垂直的证明,是中档题,解题时要认真审题,注意向量法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.已知命题p:2x2-9x+a<0,命题q:x2-5x+6<0,且非p是非q的充分条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知函数f(x)=$\frac{1}{3}$x3+x2+ax.若g(x)=$\frac{1}{e^x}$,对任意x1∈[$\frac{1}{2}$,2],存在x2∈[$\frac{1}{2}$,2],使f'(x1)≤g(x2)成立,则实数a的取值范围是(  )
A.$(-∞,\frac{{\sqrt{e}}}{e}-8]$B.$[\frac{{\sqrt{e}}}{e}-8,+∞)$C.$[\sqrt{2},e)$D.$(-\frac{{\sqrt{3}}}{3},\frac{e}{2}]$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若函数f(x)是定义在R上的偶函数,在(-∞,0)上对任意两个不相等的实数a,b总有$\frac{f(a)-f(b)}{a-b}$>0,且f(2)=0,则使xf(x)<0的x的取值范围是(  )
A.-2<x<2B.x>2或-2<x<0C.-2<x<0D.x<-2或x>2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.函数f(x)=1+log2x与g(x)=21-x在同一直角坐标系下的图象大致是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知M为抛物线y2=8x上的一点,F为抛物线的焦点,若∠MFO=120°,N(-2,0)(O为坐标原点),则△MNF的面积为8$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设全集U={-1,1,3,5,7},集合A={1,|3-a|,5},若∁UA={-1,7},则实数a的值是(  )
A.0B.6C.-4或10D.0或6

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.如图程序输出结果为16

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,在四棱锥P-ABCD中,底面ABCD是菱形,∠BAD=60°,AB=2,PA=3,PA⊥底面ABCD,E,F分别是PC,AB的中点.
(1)求证:DF⊥PB;
(2)求三棱锥P-BDE的体积.

查看答案和解析>>

同步练习册答案